pumping in one basin affects groundwater levels in adjacent basins. There is ample evidence that this proposition continues to be correct, with potentially two exceptions (East and South Las Posas basins). The Oxnard Plain Forebay, Pleasant Valley, West Las Posas, and Santa Rosa basins are all hydrologically connected to the coastal basins, evidenced by the continuity of groundwater elevation contours across their boundaries. The East and South Las Posas basins appear to be hydrologically disconnected within the subsurface from the other basins, separated from adjacent basins by either the north-south fault between the East and West Las Posas basins or a structural discontinuity between the basins and the northern Pleasant Valley basin at LAS depths. Thus, in this Management Plan, the East and South Las Posas basins are combined in determining basin yield and the remaining basins are combined for the same purpose. An example of this combination is the Oxnard Plain Forebay basin – although the basin regularly fills during wet periods, it is so directly connected to the Oxnard Plain basin (there are no hydrologic barriers preventing flow between the basins) that it is not considered separately in determining basin yield.

To determine the yield of the two sets of basins, groundwater levels calculated by the groundwater model for the 55-year forward model period were then compared to the *Basin Management Objectives* in the various basins to determine how close the modeled groundwater levels were to the objective groundwater levels. Because the model simulates conditions over several wet and dry climatic cycles, average modeled groundwater levels were compared to the objectives. The following section summarizes the results of these comparisons.

The basin yield calculation was accomplished in several steps:

- 1) The groundwater model was run in its 55-year forward model configuration (see Appendix B) with current management strategies included. If modeled groundwater levels were at or higher than Basin Management Objectives for more than half of the time, then undesirable effects such as seawater intrusion were less likely to occur and the basins were considered to be operated within their yield. If not, then the basins were considered to be operating in excess of their yield.
- 2) Groundwater extractions in the basins were either increased or decreased by stepwise amounts to determine the amount of pumping that would meet the criteria of modeled groundwater levels being at or above BMOs for more than half of the time, but not exceed, BMOs. Extraction were modified in two ways: a) changes were made proportionately to all wells in the basins within the FCGMA, and b) changes were made only in portions of the basins that were tailored to prevent undesirable effects (e.g., extractions were reduced in the south Oxnard Plain and Pleasant Valley only).
- 3) As an additional calculation, all of the management strategies in this Management Plan were combined in one model scenario to simulate whether Basin Management Objectives can be met when all the strategies were applied in other words, can these objectives be met with the tools that may be available.

BASIN YIELD

When current strategies were applied in the Base Case groundwater model run (see Appendix B), groundwater levels in the Upper Aquifer System met or exceeded BMOs 51% of the time and in the Lower Aquifer System 5% of the time. These results are consistent with observed groundwater conditions today, where groundwater levels are close to BMOs in the Upper Aquifer (and seawater is largely being held back) and significantly below BMOs in the Lower Aquifer. Thus, both the model results and observed groundwater levels indicate that the basins within the FCGMA are not being operated within their yield under the current pumping patterns and management strategies – lowered groundwater levels create undesirable effects such as saline intrusion.

To determine basin yield, pumping was then reduced step-wise in the forward model until BMOs were met at least half the time during the model simulation. As indicated above, two methods of pumping reductions were used – GMA-wide and targeted only to the south Oxnard Plain and Pleasant Valley basins. The results of these model runs are shown in Figure 19.

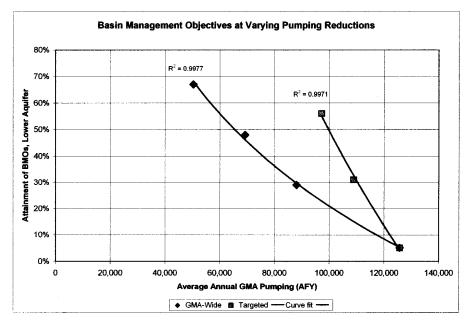


Figure 19. Groundwater model results from progressively reducing FCGMA pumping both agencywide (diamond symbol) and targeted to the south Oxnard Plain and Pleasant Valley basins (square symbol). Results are indicated as percent of time that BMOs are met or exceeded in the Lower Aquifer System. R² values are indicated for the two curve fits.

Figure 19 indicates that when progressively greater pumping reductions are applied to all wells within the FCGMA, Lower Aquifer BMOs are attained at least 50% of the time when FCGMA pumping is reduced to about 65,000 AFY – about half of current average pumping. When the reductions are limited to the south Oxnard Plain and Pleasant Valley basins, overall FCGMA pumping is reduced to about 100,000 AFY to attain the same Lower Aquifer BMO goals. Because the significant lowering of groundwater levels has

occurred in the south Oxnard Plain and Pleasant Valley areas, it is appropriate that this is where pumping reductions should occur, as they have through historic in-lieu water deliveries. Thus, 100,000 AFY appears to be an appropriate number for basin yield.

There are three caveats to this calculation of basin yield:

- 1) Overall pumping in the south Oxnard Plain and Pleasant Valley areas was reduced by about 25,000 AFY (an 85% reduction). There are several approaches to achieve this reduction, with replacing the pumping with in-lieu deliveries being the primary historic method that is also favored in the management strategies discussed in this Plan.
- 2) The yield of the basins is not a forever-fixed number, but depends upon the projects in the basin increasing the amount of recharge in the basins also increases the yield of the basins. Therefore, the yield of the basins must be recalculated periodically as new projects become operational and conjunctive use is increased.
- 3) When Lower Aquifer BMOs are attained 50% of the time, there should be no net movement of seawater within the aquifers. However, during dry periods there would be onshore gradients and during wet periods there would be offshore gradients. Thus, seawater may move landward during the dry periods and be pushed back during wet periods (which has been evident over the past 15 years at coastal Port Hueneme). To create conditions such that seawater could never move landward, the Lower Aquifer goals would have to be met nearly 100% of the time – an unrealistic goal that would require very large pumping reductions and create conditions where large quantities of fresh water were flowing to the ocean almost all the time. The 50% attainment of BMOs should be considered as an initial target level, but should be revisited as that goal is approached to ensure that it is sufficiently protective of the aquifers. If water quality problems continue as the 50% attainment level is approached, an increase in the attainment level should then be considered. Thus, the basin yield of 100,000 AFY that is tied to the 50% attainment level may have to be adjusted in the future.

An additional basin yield task was to apply all the future management strategies into one simulation of the model to determine whether Basin Management Objectives could be met if these strategies were in place. After applying the management strategies discussed in the following *Management Strategies Under Development* and *Potential Future Management Strategies* sections, the groundwater modeling indicates that Upper Aquifer BMOs could be met 67% of the time and Lower Aquifer BMOs could be met 76% of the time. Thus, application of the management strategies in this Plan apparently can solve the overdraft within the FCGMA.

CURRENT GROUNDWATER MANAGEMENT STRATEGIES

This Plan evaluated three types of management strategies for effectiveness: 1) currently implemented management strategies; 2) strategies under development where some action has already been taken to design and implement those strategies; and 3) potential future management strategies. Current strategies were evaluated by measuring their effect on changing groundwater levels and improving groundwater quality. Proposed and future strategies were evaluated using the Ventura County Regional Groundwater Model (an empirical computer simulation of groundwater flow described in Appendix B).

Several management strategies were adopted as part of the original 1985 FCGMA Management Plan. In addition, several other strategies were also implemented in the ensuing period since 1985. The previously-adopted 1985 FCGMA management strategies are discussed first, followed by the additional strategies. The effectiveness of these management strategies is then evaluated in the following discussion.

DESCRIPTION OF 1985 FCGMA MANAGEMENT PLAN STRATEGIES

The original 1985 FCGMA Management Plan specified several management strategies that would be implemented. These include:

Limitation of Groundwater Extractions – The most visible of the FCGMA strategies was the phased reduction in pumping within the FCGMA, implemented under FCGMA Ordinance No. 5 (now Chapter 5 within Ordinance No. 8). This strategy called for a 25% pumping reduction over a 20-year period via phased 5% incremental cutbacks to Historical Allocations every 5 years. As part of this strategy, pumping allocations, conservation credits, and agricultural irrigation efficiency allowances were implemented. To allow inherent flexibility, the Ordinance provides for Historical Allocation adjustments of no more than two acre feet per acre when land use changes from farming to municipal/industrial. A Baseline Allocation of one acre foot per acre was established for lands without allocations or lands that were developed after the baseline period ended in 1989 and were dependent upon groundwater. In addition, an Efficiency Allocation that allows farmers sufficient allocation to grow different crops as long as they remain at least 80% efficient (less than 20% of irrigation water runs off, leaches, or goes to deep percolation). Baseline and Efficiency allocations are exempt from the mandatory 25% reductions. To discourage overpumping, the FCGMA Ordinance imposes an extraction surcharge on all water pumped in excess of the annual allocation. The penalty initially ranged from \$50/AF to \$200/AF under a four-tiered system; however, that system was modified in favor of a single flat rate that was adjusted upward to \$725/AF.

Ordinance No. 5, now part of Ordinance No. 8, also has a provision for establishing Conservation Credits by extracting less groundwater than the

Historical Allocation. Conservation Credits can be used to avoid paying penalties when extractions exceed the entitlement. A second type of credit, Injection or Storage, may be established and applied to future extractions when foreign water is injected or percolated into the aquifer. Conservation credits are allowed to accumulate with no restrictions, allowing some pumpers to accumulate credits for tens of thousands of acre-feet of water.

The required phased 5% reductions occurred in 1992, 1995, and 2000 for a current reduction of 15% of allocation for pumpers using their Historical Allocation. The planned additional 5% reduction for 2005 has been delayed per a request from M&I well owners who have asked for a re-evaluation of the effectiveness of such reductions as part of formulating this Management Plan.

Encourage Both Wastewater Reclamation and Water Conservation – The Ventura County Planning Department prepared a "Water Conservation Management Plan" which recommended various voluntary measures that could be employed to conserve water. Many farmers, individual households, and cities have adopted voluntary agricultural and urban water conservation programs. For several years, in the late 1980s and early 1990s, the County Planning Department designated Planner positions as "Water Conservation Coordinators." This program no longer has funding, but the water conservation program created material that continues to be distributed to schools and the public.

A Countywide Wastewater Reuse Study, prepared in 1981, identified wastewater reuse opportunities in the Las Posas Valley from either the Simi Valley Wastewater Treatment Plant or the Moorpark Wastewater Treatment Plant, and identified an opportunity to use recycled wastewater from the Thousand Oaks/Hill Canyon Wastewater Treatment Plant for irrigation on the Oxnard Plain. Since that report, the Moorpark Wastewater Treatment plant has upgraded to tertiary disinfection and a portion of the recycled water is supplied for irrigation to nearby golf courses. The Thousand Oaks/Hill Canyon project (now known as the Conejo Creek Diversion project) has been in operation for several years; it is discussed in the following section. In addition, the City of Oxnard's proposed recycled water project is discussed in the section on *Currently Proposed Management Strategies*.

Operation of the Oxnard Plain Seawater Intrusion Abatement Project (UWCD's Pumping Trough Pipeline, Lower Aquifer System Wells, Freeman Diversion) – The Pumping Trough Pipeline (PTP) was constructed in 1986 to convey diverted Santa Clara River water to agricultural pumpers on the Oxnard Plain, thus reducing the amount of groundwater extractions in areas susceptible to seawater intrusion (Figure 20). When river water is not available, five Lower Aquifer System wells pump water into the pipeline. The Freeman Diversion (1991), which replaced the former use of temporary diversion dikes in the Santa Clara River with a permanent concrete structure, now allows for diversion of river storm flows throughout the winter rainy season. As a side benefit, the Freeman Diversion helped stabilize the riverbed after years of

degradation caused by in-stream gravel mining. The permanent Freeman Diversion increased the yield of the Seawater Intrusion Control Project by about 6,000 AFY over the previous means of temporary diversion.

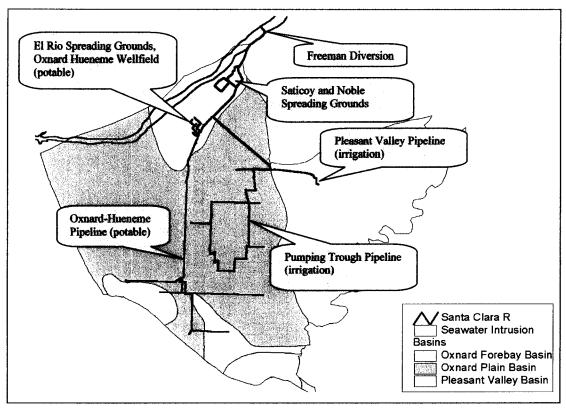


Figure 20. Elements of the Seawater Intrusion Control Project on the Oxnard Plain.

Operating Criteria for the Oxnard Plain – The combination of FCGMA policies and water conservation facilities have effectively moved pumping away from the coastline and from the Upper Aquifer System to the Lower Aquifer System. The switch in aquifer pumping is discussed in the next FCGMA strategy. The effectiveness of these criteria is discussed in the section on Effectiveness To-Date.

Construction/Modification Restrictions on Upper Aquifer System Water Wells

- In areas where they could cause overdraft or seawater intrusion in the Oxnard Plain basin, the County adopted a well ordinance that prohibited new wells in the Upper Aquifer System in the Oxnard Plain basin, instead requiring new and replacement wells to be drilled in the Lower Aquifer System. The effectiveness of this strategy is discussed in the section on *Effectiveness To-Date*.

This policy has now been shifted. A new policy for areas where pumping could cause overdraft or seawater intrusion in the Oxnard Plain basin (especially in what are called Sealing Zones 1 and 2 where multiple aquifer layers exist) was

adopted by the County. This new well ordinance, adopted in 1998, prohibited new wells in the LAS beneath the Oxnard Plain, instead requiring new and replacement wells to be drilled into the more-easily replenished UAS. This shift in pumping was effected by a change in the County Well Ordinance to institute a complete reversal in which aquifers are targeted for production based on findings from the U.S. Geological Survey RASA study and observations from the network of monitoring wells. Since the County Well Ordinance was revised in 1998, only replacement wells or situations with no other water supply option available may tap into the LAS beneath the Oxnard Plain.

Annual Groundwater Monitoring Program – The FCGMA and UWCD participated with the USGS in installing (circa 1990) a series of multiple-completion nested monitoring wells along coastal areas of the Oxnard Plain basin and in a few inland areas. These wells allow measurement of groundwater levels and sampling of water quality at two to six discrete aquifer depths at each well site. These wells, in addition to a wide range of productions wells, are now being monitored at regular intervals by VCWPD and UWCD. The VCWPD findings are entered into a database and published as supporting data in various reports on water quality, groundwater basins, or special subject or area studies. UWCD enters its monitoring data into a database that is then augmented by monitoring data from VCWPD and California Department of Health Services (public supply wells). UWCD conducts an annual evaluation of all the monitoring results in its database and prepares an annual report that is available on UWCD's website (www.unitedwater.org).

Contingency Plan for LAS Seawater Intrusion – Although it was hoped that such a plan would never be needed, the FCGMA staff developed an as-yet-unfinished and informal contingency plan that consists of a list of possible measures that could be instituted to address intrusion of seawater into the LAS. The list items were only to be offered to the FCGMA Board as possible countermeasures in the event of a severe water quality decline in a significant number of LAS wells. This list included suggestions such as managing the intruded basin in a separate management scheme, further reductions in LAS well Historical Allocations, possible groundwater use restrictions by maximum volume per acre served (in the case of irrigated lands or per resident or dwelling unit in the case of urbanized areas), a complete ban on all future LAS wells regardless of need or circumstance, monetary or other potential incentives to encourage LAS well owners to destroy wells in favor of other possible water sources, and other such means of LAS management.

North (now called East and West) Las Posas Basin Pumping Restrictions — The FCGMA adopted Ordinance No. 4 (now Chapter 4 within Ordinance 8) that prohibits expansion of water use outside the Las Posas Basins and/or the Agency boundary, especially on the sensitive Aquifer Outcrop Zone or Expansion Area. The Aquifer Outcrop Zone is that land or geographic area where the Fox Canyon and/or Grimes Canyon aquifers reach the ground surface and are exposed as outcrops. Ordinance 4 restricts or precludes use of any harmful land uses in this zone (such as impervious surfaces, septic systems, pesticides,

fertilizers, or groundwater withdrawals), because this area acts as a direct conduit to the usable aquifer water stored at depth. The Expansion Area was defined as that portion of land from the crest of the hill or 1.5 miles beyond the Agency boundary (northernmost extension of the Aquifer Outcrop) that drains into the Agency. Because groundwater quality protection and prevention of volume exports are the prime subjects of these laws, the Expansion Area was officially designated as an official Sphere of Influence zone by the Ventura LAFCO (Local Area Formation Commission). No wells, no additional agriculture, and only very limited single family home development is allowed in these areas, and only under special restrictions and circumstances.

Monitor FCGMA Groundwater Extractions to Ensure That They Do Not Exceed Adopted Projections for That Basin – The FCGMA requires semi-annual reporting of extractions from pumpers within the Agency as part of the measures instituted within Ordinance No. 5 (now Ordinance No. 8). These data are entered into a database maintained by the FCGMA. Individual operator annual extractions are compared against allowed allocations or irrigation efficiency at the end of each calendar year to determine whether well operators are within their allowed pumping. As discussed under the first strategy on limitations of groundwater pumping, penalties are assessed for overpumping, and credits are posted for conservation or storage.

Implementation of Drilling and Pumping Restrictions – This strategy is discussed as part of several of the strategies above and is supported by the County Well Ordinance and the cooperation of water districts and well owners.

Metering of Groundwater Extractions – As part of the original Ordinance No. 5, extractions must be reported to the FCGMA on a semi-annual basis. Ordinance No. 3 (now Chapter 3 within Ordinance No. 8) required water flow meters to be installed at owners' expense on all groundwater pumps except domestic users on one acre or less. Not all pumpers have installed meters or use their meter readings to report extractions. Resolution 2006-1 requires periodic accuracy calibration of every water flow meter by independent testing agents. This Resolution also tightened requirements and imposed restrictions on well extraction reporting in addition to adding more strict penalties for non-compliance.

DESCRIPTION OF OTHER CURRENT STRATEGIES

There are several other groundwater management strategies that have been implemented within the FCGMA area that were not foreseen when the original management plan was formulated some 20 years ago. These include:

Fox Canyon Outcrop Expansion Area – A buffer zone ("Expansion Area") along the outcrops of the Fox and Grimes Canyon aquifers, which are adjacent to and outside of the FCGMA boundaries, was established in 1997. This zone was established to protect any land uses on the outcrop or within the Agency that

might adversely affect groundwater recharge, groundwater extractions, or water quality.

- Noble Spreading Basins The Noble Spreading Basins (1995), across Los Angeles Avenue opposite UWCD's Saticoy Spreading Grounds, were constructed to store and recharge additional Santa Clara River water diverted at the upstream Freeman Diversion, particularly during wet periods. These relatively shallow basins were reclaimed gravel pits purchased by UWCD and reconfigured as water spreading basins. Water placed in the facility recharges both the Upper Aquifer System and the Lower Aquifer System. The ten-year average for the facility is 6,000 AFY, with individual years varying from 0 AF to 17,800 AF.
- Las Posas Basin ASR Project The FCGMA in 1994 approved Calleguas MWD's Las Posas Basin Aquifer Storage and Recovery (ASR) project as an Injection/Storage Facility. This allowed Calleguas MWD to receive Storage Credits for water recharged as part of the project. Conditions of the approval included registration of the injection/extraction wells, monthly reporting of injection/extraction volumes, water quality requirements for injected water, a limit on the amount of water in storage (300,000 AF), required points of extraction, a limitation to use the stored water only within Ventura County, periodic review of injection/extraction effects, and an agreement to halt operations if any conditions are not met. As of 2006, Calleguas MWD has stored over 60,000 AF of water through in-lieu deliveries to basin pumpers and direct injection. The only extractions have been for testing and maintenance.
- Conejo Creek Diversion Project –The Conejo Creek Diversion Project (2002), constructed by Camrosa Water District just south of where Highway 101 crosses Conejo Creek, diverts flows from the creek and delivers the water to Pleasant Valley County Water District to meet local irrigation demands within the overdrafted Pleasant Valley basin. The water diverted from the creek is a combination of natural stream flow and recycled water released into the creek from wastewater treatment plants upstream. This diverted water replaces Lower Aquifer System pumping in the Pleasant Valley basin. The contractual amount of water from the diversion is 3,000 AFY (if available), although an average of 5,300 AFY has been diverted in the first four years of operations. These diversions may increase temporarily, but are likely to decrease over the next 20 years as the recycled water is used elsewhere by Camrosa Water District customers.
- Supplemental M&I Water Program The Supplemental M&I Water Program is operated through the Oxnard-Hueneme (O-H) Pipeline system. The joint UWCD-Calleguas MWD project uses FCGMA credits earned by Pleasant Valley County Water District from the Conejo Creek Diversion Project to supplement O-H water supply. This project effectively shifts Lower Aquifer System pumping in the Pleasant Valley basin to Upper Aquifer System pumping in the Oxnard Plain Forebay basin. The program is capped at 4,000 AFY and is only implemented in years when groundwater levels in the Forebay are sufficiently high to prevent harm to other Forebay pumpers. The program

effectively reimburses Calleguas MWD for their investments in the Conejo Creek project, a precedent that may allow similar types of projects in the future.

Saticoy Wellfield – The UWCD Saticoy Wellfield (2005) was constructed adjacent to the UWCD Saticoy Spreading Grounds to pump shallow water from the recharge mound underlying the spreading grounds in wet years and deliver the water to users along United's existing agricultural pipeline system (Pleasant Valley and PTP pipelines). This pumping from the Oxnard Plain Forebay basin decreases the recharge mound, allowing more spreading and groundwater recharge from the basins during wet periods. The water produced by the pumping in the Forebay replaces LAS groundwater pumping along the Pumping Trough Pipeline (PTP) and Pleasant Valley (PV) Pipelines.

Importation of State Water – The County of Ventura holds a State Water allocation of 20,000 AFY administered by the California Department of Water Resources (DWR). This allocation is divided among UWCD, the City of Ventura, Port Hueneme Water Agency (as a sub-allocation of UWCD's portion), and Casitas MWD. UWCD uses its allocation to supplement recharge to the aquifers along the Santa Clara River within Ventura County. UWCD's 3,150 AFY allocation (UWCD's allocation was 5,000 AFY, but the Port Hueneme Water Agency acquired 1,850 AFY of the allocation) is ordered from DWR during normal and dry years for delivery to Lake Piru via stream releases from the DWR-operated Lake Pyramid downstream along Piru Creek. This State Water is then released from Lake Piru as part of UWCD's normal conservation release in the late summer and fall. As this water flows down Piru Creek and the Santa Clara River, a portion of it percolates into the groundwater basins along the river (Piru, Fillmore, and Santa Paula) and a portion reaches the Freeman Diversion for recharge to the Oxnard Plain.

This recharge is not credited by the FCGMA to UWCD directly, but based on many years of study, measurement, and computer modeling, the portion of the DWR purchased water that ultimately reaches the Freeman Diversion is credited as new or foreign water. The credits are placed in a UWCD-held trust fund that may be used in the future to solve common FCGMA management issues that are beneficial to the aquifers within the Agency. The Port Hueneme Water Agency's 1,850 AFY is delivered via Calleguas MWD's conveyance facilities. Except for 2,000 AF imported in 2002, no other portion of the 20,000 AFY entitlement has ever been imported to Ventura County, although annual capital costs continue to be paid to DWR to maintain this Allocation. Additional importation of State Water is discussed in the section *Potential Future Management Strategies*.

Additional Groundwater Monitoring – As saline intrusion has encroached further inland beneath the south Oxnard Plain, saline waters have moved eastward of the existing monitoring well network in some areas. In 2006, UWCD will install two additional nested monitoring well sites north of Mugu Lagoon, with funds obtained from a Department of Water Resources grant. These monitoring

wells will be incorporated into the monitoring network and sampling protocol for the existing dedicated monitoring wells.

Calibration of Groundwater Extraction Meters – Resolution 2006-1 was adopted by the FCGMA Board that will phase-in a flow meter calibration and inspection program over three years. After the phase-in, each meter will be required to be checked at 3-year intervals.

EFFECTIVENESS TO-DATE OF CURRENT MANAGEMENT STRATEGIES

The management strategies applied over the past 20 years to combat seawater intrusion have resulted in dramatic improvements in water levels and water quality in portions of the Upper Aquifer System (UAS), while at the same time salinity in the Lower Aquifer System (LAS) has worsened. This has occurred because adding recharge to the UAS and switching pumping from the UAS to the LAS has relieved pumping stresses in critical areas of the UAS. This strategy has resulted in the opposite effect in the LAS, however; the LAS is now pumped more than in the past and those extractions are not completely balanced by natural or artificial recharge to the LAS.

The FCGMA policy of reduced pumping has had positive effects in all the aquifers. For pumpers using their Historical Allocation under Ordinance No. 5, there has been a pumping reduction in excess of the 15% currently required by the FCGMA. There have been only isolated incidents of pumping in excess of allocation, reflecting both the general acceptance of the pumping reductions and the stiff monetary penalty for overpumping. For agricultural pumpers using an Irrigation Efficiency calculation, pumping reductions have been even more dramatic. In a study using the FCGMA weather stations to calculate daily crop water demand, Agency-wide irrigation efficiency (measured by less reported water use compared to FCGMA-computed crop water demand) improved by about 30% during the first several years of the FCGMA pumping reductions (UWCD, 2002). The increased efficiency is consistent with the decreased extractions reported to the FCGMA over the last decade (see Groundwater Extractions section). Widespread acceptance and installation of drip tape, micro sprinklers, mini sprinklers, leak repairs, computer controlled watering cycles, farm-operated weather stations to assist with irrigation frequency and duration, various ground-based moisture sensors and lysimeters, farmer and irrigation crew education, and a shift away from wasteful furrow irrigation or high volume sprinkler heads, along with reduction of tailwater losses have all contributed to the reduction in groundwater use.

One of the key hydrogeologic findings over the last 10 years indicated that a zone of lower conductivity (such as a fault or some other deformation) extends from the Camarillo Hills to Port Hueneme (aligned with the known location of the Simi-Santa Rosa fault in the Camarillo Hills) limiting the amount of recharge that can flow from the Oxnard Plain Forebay basin into the south Oxnard Plain and Pleasant Valley areas. In these areas, extractions far exceed recharge, resulting in groundwater levels that have fallen to well below sea level from the ocean inland to the City of Camarillo. Three current projects recharge these critically overdrafted areas: diverted Santa Clara River

water is delivered via the Pleasant Valley and Pumping Trough pipelines and diverted Conejo Creek water is delivered via the Conejo Creek project. These three projects deliver in-lieu recharge to the south Oxnard Plain and Pleasant Valley basins (the delivered surface water is used for irrigation in-lieu of pumping groundwater).

However, the Pumping Trough Pipeline (PTP) operated by UWCD provides mixed effects in reducing pumping in the Lower Aquifer System. The diverted Santa Clara River supplies delivered to PTP customers in-lieu of pumping groundwater have unambiguous benefits in helping to eliminate the pumping trough in the Upper Aquifer System and helping eliminate overdraft in the Lower Aquifer System. But the PTP project also has five LAS wells that provide irrigation water to customers along the pipeline when there are insufficient supplies in the Santa Clara River available for diversion and delivery. These wells were completed in the LAS because at the time the LAS was in better shape than the UAS. Since the UAS has substantially recovered from overpumping but the LAS has been severely depleted, these five LAS wells are no longer optimally-located; they now pump from the flank of the large pumping depression in the LAS of the south Oxnard Plain and Pleasant Valley basins. Thus, one of the previouslyassumed solutions to reduce groundwater extractions within the pumping trough of the UAS has created new problems in the LAS. Some of this LAS pumping for the PTP project is being replaced by UAS pumping from the UWCD Saticoy Wellfield (located in the Oxnard Plain Forebay basin); this strategy should be maximized in the future.

One of the FCGMA strategies historically underutilized is the substitution of recycled water for groundwater pumping. The Conejo Creek project has begun the process of using recycled water which originates in the City of Thousand Oaks. Other recycled projects are not yet operational (e.g., see later discussion of the City of Oxnard's GREAT project).

Results from the Ventura Regional Groundwater Model indicate that when all current projects that implement the FCGMA Management Plan are operational, there will still be an overdraft in the basins within the Agency. With only current strategies in place, BMOs for groundwater levels would be met 51% of the time in the Upper Aquifer and 5% of the time in the Lower Aquifer (see Appendix B). This analysis is derived from the model Base Case, which uses reported pumping over the past 10 years as the basis for modeled extractions. If actual pumping was higher than reported, then the model would have to be recalibrated to reflect this. A sensitivity analysis was conducted to examine the effect of understated pumping in the model (Appendix B), which indicated that if agricultural pumping was understated by 15% (caused by poorly-calibrated meters or inaccuracies in other reporting methods), results from the current model could be up to 15 feet too high in the Lower Aquifer (the aquifers would be in worse shape than modeling suggested). If the model was recalibrated to reflect this understatement of pumping, these results would be corrected.

It is clear both from the modeling results and from the observation that BMOs are not being met in many areas, and that additional management strategies and projects must be initiated to alleviate this continued overdraft. The following sections address this need.

MANAGEMENT STRATEGIES UNDER DEVELOPMENT

There are several projects at various stages of development that will further reduce water supply and water quality problems within the FCGMA. Some of these projects follow the original management strategies of the Agency, whereas others deal with issues not contemplated in the original management plan. The strategies are presented in the order of their impact on the aquifer (high impact strategies are discussed first), with projects under development discussed in this section and future strategies discussed in the following section. The ranking of both strategies under development and future strategies that were amenable to testing with the groundwater model is indicated in Table 7. For strategies that could not be directly evaluated with the groundwater model (because there was no change in the place or amount of recharge or pumping), other ranking factors are discussed with each strategy.

Strategy	UAS AWL	Meet UAS BMOs	LAS AWL	Meet LAS BMOs
Current Strategies		51%		5%
Barrier Wells	+11'	63%	+46'	48%
GREAT Project	-1'	51%	+38'	36%
Injection River Water	+1'	53%	+7'	11%
Shift Pumping UAS	-1'	50%	+8'	9%
Increase River Diversions	+3'	54%	+3'	8%
Addtl Recharge S Oxnard	+1'	53%	+4'	7%
Continue 25% Reduction	+1'	53%	+2'	7%
Import State Water	+2'	54%	+1'	7%
Riverpark Recharge	<1'	52%	<1'	6%
Shift Pumping NW Oxnard	<1'	51%	<1'	5%
All Strategies	+15'	67%	100'	76%

Table 7. Ranked results of groundwater modeling of management strategies amenable to evaluation with the groundwater model. The table indicates the average change in groundwater levels expected in each aquifer at the wells for which there is a BMO for each strategy. The table also indicates the average amount of time that groundwater levels were at or above BMOs for each aquifer (see discussion of this technique in section Basin Management Objectives).

GREAT PROJECT (RECYCLED WATER)

The GREAT (Groundwater Recovery Enhancement and Treatment) project is ranked highest of the projects under development because of its effectiveness in reducing Lower Aquifer overdraft (see Table 7). However, the most effective portion of the project would occur at 10 to 15 years from now, when all components of the project are scheduled to be in place.

Description

The project is being designed and implemented by the City of Oxnard. The project has three major components: 1) a new regional groundwater desalination facility; 2) a recycled water system to deliver water to M&I non-potable water uses within the City of Oxnard, to deliver water to agricultural users in the Pleasant Valley area, and to inject water as a barrier to seawater intrusion; and 3) conveyance of desalination backwash concentrates through a brine line to either the City's existing ocean outfall or the Ormond Beach area for coastal wetland restoration. Potable water supplies for the City would then be pumped from the Forebay by utilizing FCGMA credits earned from both direct recharge (barrier wells) and in-lieu recharge (M&I non-potable and agricultural deliveries). This Forebay supply could be pumped from existing Oxnard-Hueneme system UAS wells, existing City wells, and/or new City wells. The FCGMA would have to approve recharge and pumping facilities, as well as implement policies discussed later in this section.

The project will be constructed in phases, with project yield ramping up over time from around 5,000 AFY to more than 21,000 AFY. Actual timing of construction will depend upon projected growth in water demand and funding. This project implements the strategy of pumping groundwater from areas of the aquifer readily recharged and reducing pumping in areas of the aquifer that are more difficult to recharge. In addition to offsetting existing potable water demands with recycled water supplies, this is accomplished by supplying in-lieu and injected recharge to the Pleasant Valley basin and south Oxnard Plain areas where it is needed most. A similar amount of water would be pumped from the Oxnard Plain Forebay basin. This strategy moves a considerable amount of extractions from areas that are overpumped to the easily-recharged Oxnard Plain Forebay basin.

Because M&I non-potable and agricultural demand is lower in the winter and recycled water cannot be effectively utilized during that time, a direct recharge component is necessary to accommodate the winter quantities of recycled water. A configuration of injection wells along Highway 1 and Hueneme Road was examined using the Ventura Regional Groundwater Model; this conceptual configuration is discussed in the EIR for the GREAT Project (City of Oxnard, 2005). Injecting water during only a portion of the year is less effective than with full-time injection; the addition of supplemental waters to use for injection is discussed as another strategy of this management plan.

Two FCGMA policy issues need to be addressed relative to the GREAT project. The FCGMA has allowed a one-for-one earning of storage credits — one acre-foot of stored water equals one acre-foot of storage credits — that has been applied to such projects as Calleguas MWD's Las Posas ASR project. When water is injected into a groundwater barrier to contain saline intrusion, however, some of the injected water will likely be tainted by the saline waters. The policy question then becomes whether the entire injected water should earn one-for-one storage credits; this is largely a policy decision rather than a technical decision.

The other FCGMA policy issue relates to pumping the storage credits from the Oxnard Plain Forebay basin. Moving the location of pumping to the Forebay is beneficial to the Pleasant Valley and Oxnard Plain basins, providing that the added pumping stress in the Forebay can be accommodated. For other strategies that involve pumping in the Forebay (e.g., Saticoy Wellfield, Supplemental M&I Water Program), there is a caveat that pumping not occur when groundwater levels have dropped below a threshold that applies to the use of water from the Freeman Diversion as a grant condition from the State Water Resources Control Board (available Forebay storage of 80,000 AF, using two index wells). Such a caveat is also appropriate for the GREAT project. The City of Oxnard can accommodate such an operational requirement by shifting its pumping to wells in the Oxnard Plain just outside of the Forebay when groundwater levels are low in the Forebay. The FCGMA should implement a general policy for all projects that shift pumping from overdrafted areas to the Forebay.

Potential Effectiveness

This planned GREAT project would implement one of the strategies likely to be successful in restoring groundwater levels in the Pleasant Valley and Oxnard Plain basins. As part of the EIR for this project, the Regional Groundwater Model was used to test the effects of the project. The project was tested both at the lower initial yield and at full implementation. The effectiveness of the project must be judged by balancing raising Lower Aquifer System water levels in the Pleasant Valley basin and south Oxnard Plain areas against lowering water levels in the Oxnard Plain Forebay basin. The groundwater model indicated water levels in the LAS beneath the southern Oxnard Plain basin and the Pleasant Valley basin would rise by as much as 70 feet, whereas UAS water levels in the Forebay basin would only drop by about 5 feet during wet periods and 20 feet during dry periods. Thus, the project will have to carefully balance the positive and negative effects on water levels. Potential mitigation of lowered water levels in the Forebay include inducing more recharge from existing facilities and from potential increased diversion rights at the Freeman Diversion. The results of the groundwater modeling suggest that BMOs for groundwater levels would be met 51% of the time in the Upper Aquifer (compared to 51% with current management strategies) and 36% of the time in the Lower Aquifer (compared to 5% with current management strategies) with full construction of the GREAT project.

If current recharge is reduced in the Forebay because of required fish flows or other reasons, then the Forebay basin may not be able to accommodate increased pumping, particularly in dryer periods. The City of Oxnard will conduct a monitoring program as part of the GREAT project to measure effects of the project. It would be prudent for the FCGMA to have a written agreement on operation of the GREAT project to ensure long-term operation of the project would continue to meet Agency strategies.

SOUTH LAS POSAS BASIN PUMP/TREAT

This management strategy is ranked high because it is in a mature stage of design and the problem that it aims to help solve is an ongoing problem for the Las Posas basin that needs a rapid solution to prevent further water quality degradation.

Description

As documented in the section of this Plan on current issues entitled *High Salinity Associated with High Groundwater Levels*, high groundwater levels in the South Las Posas basin have dissolved salts from the unsaturated portions of the shallow aquifer and created a recharge mound more saline than ambient groundwater. One mitigation measure to counteract this problem would be to pump the saline groundwater from the shallow aquifer, creating space in the aquifer allowing better-quality winter storm infiltration to percolate into the aquifer; the majority of these winter flows now bypass the recharge areas because the shallow aquifer is full. The pumped water would be blended with low-chloride water or desalted before being delivered to customers.

Ventura County Waterworks Districts #1 (Moorpark) and #19 (Somis) are working with the Calleguas MWD to design and fund such a pilot project in the South Las Posas basin. This pumping would be in excess of current FCGMA allocations and required prior approval of the FCGMA Board. Because the original FCGMA Management Plan did not foresee such a project, the Board gave its approval based on technical analyses by Calleguas MWD and WWD #1 staff. A general FCGMA policy for these types of projects in the future is discussed in the section *Recommended Additions to FCGMA Policies*.

Potential Effectiveness

The effectiveness of this particular strategy can be evaluated using two criteria. The first is the overall reduction in salts in the South Las Posas basin because higher-salinity groundwater is extracted and treated, removing salts from the system. The improvement in water quality in the basin would depend upon the amount of groundwater extracted and treated, versus the ability of the aquifer to contribute additional dissolved salts. Another measurement of effectiveness would be the efficacy of drawing down the shallow groundwater to create space for recharge of better quality rain water. Thus, there are several factors that control the effectiveness of removing salts by pumping and treating the groundwater. It is not possible at this time to adequately combine the factors to determine overall potential changes in water quality. However, at a minimum, salts removed during extraction and treatment would remove a portion of the salts in the basin.

DEVELOPMENT OF BRACKISH GROUNDWATER, PLEASANT VALLEY BASIN

This strategy is also ranked high because it can be implemented relatively quickly, may prevent water quality degradation in the northern Pleasant Valley basin, and would reduce pumping in the middle of the largest pumping depression in the Pleasant Valley basin.

Description

There are additional areas along Calleguas Creek besides the South Las Posas basin where groundwater has elevated salinity. Base flow from the Arroyo Las Posas has migrated completely across the South and East Las Posas basins and into the northernmost Pleasant Valley basin, providing a source of recharge to this portion of the Pleasant Valley basin. However, this recharge water has created water quality problems for groundwater pumpers. City of Camarillo wells in this area have experienced increased salts as groundwater levels have risen over the last decade (Figure 14), similar to what has already happened in the South and East Las Posas basins.

It is not yet clear if this recharge water from the Arroyo Las Posas will create a groundwater recharge mound of poorer-quality water that would move out into the main portion of the Pleasant Valley basin, similar to what has happened in the Las Posas basin – this would depend upon how the recharged area is hydrologically connected to the main portion of the LAS in the Pleasant Valley basin. The City of Camarillo is considering a strategy to move some of its current pumping from the area of the LAS pumping depression beneath Pleasant Valley to this area of poorer-quality rising groundwater. Under this plan, the poorer-quality water would be extracted and desalted in a similar manner to the South Las Posas basin project approved by the FCGMA Board.

The City of Camarillo has assessed the feasibility of constructing a Groundwater Treatment Facility that would be located in the Somis Gap area of the Pleasant Valley Basin (Black and Veatch, 2005). The study determined the project to be technically feasible and would allow Camarillo to halt pumping from an area of the LAS with depressed groundwater levels and instead pump in an area of rising groundwater levels. This plan is similar in nature to the South Las Posas Basin project, which was previously approved by the FCGMA Board and consistent with policy to move pumping to areas of known substantial recharge (i.e., Oxnard Forebay) which will create more storage space for future recharge events. The City of Camarillo proposes to coordinate pumping strategies between various stakeholders in the neighboring sub-basins in order to maintain replenishment of the Pleasant Valley Basin.

Camrosa Water District is considering another type of potential project that develops brackish groundwater. In an area of the eastern portion of the Pleasant Valley basin near California State University, Channel Islands along Calleguas Creek, Camrosa has been studying the possibility of extracting poor-quality Upper Aquifer(?) water, treating it, and putting it in their delivery system. This water, some of which was used historically, has risen to high groundwater levels. Water quality monitoring in the adjacent main portion of the Pleasant Valley basin indicates that this poorer-quality water may not be migrating into the Lower Aquifer of the Pleasant Valley basin. Thus, there is the possibility this water could be pumped without lessening the supply to the Pleasant Valley basin. Some of this area is outside the FCGMA boundary.

Previously, both the potential Camarillo and Camrosa projects would have to be pumped using existing allocations if the well was within the FCGMA boundary. However, as FCGMA policy has evolved over time, pumping of poorer quality groundwater without

an allocation has been allowed on a case-by-case basis. A coordinated effort between the FCGMA and proponents of such projects in the Pleasant Valley basin should be undertaken to determine whether these projects are within this policy. This FCGMA policy issue is discussed in more detail in the section "Recommended Additions to FCGMA Policies."

Potential Effectiveness

Pumping and removing salts from groundwater is an effective means of reducing the salt load in a watershed. If the areas from which the salts are removed are hydrologically connected to the main portions of the groundwater basins within the FCGMA, then this removal of salts could also have a positive impact. If the pumping of this poorer-quality groundwater does not affect the main groundwater basins, then these projects would have a neutral effect on the main groundwater basins while increasing the supply of available water. However, if these projects reduce the recharge to the FCGMA groundwater basins without also providing a significant benefit to water quality in these basins, than the projects could have a negative impact on the groundwater basins within the Agency. Any such projects would require monitoring of both water levels and water quality to determine their effect on adjacent areas of the basin.

The potential City of Camarillo project also has an element of moving existing pumping from the area of the Pleasant Valley basin near the Camarillo airport, which has the most-depressed groundwater levels, to an area more favorable for recharge along Arroyo Las Posas. The portion of the potential project related to the pumping reduction was tested using the Ventura Regional Groundwater Model (see Appendix B). Model results indicate that the worst portion of the pumping depression would be decreased considerably in size, leaving a smaller depression in the southern Pleasant Valley basin. The other element of the project, increasing pumping along the Arroyo Las Posas, cannot yet be tested effectively with the model. The model does not now capture the hydrogeology of the northernmost portion of the Pleasant Valley basin – a recharge area of the basin near Somis that is now apparent from monitoring data needs to be better understood and integrated into the model.

NON-EXPORT OF FCGMA WATER

This strategy is important in preventing additional un-authorized pumping within FCGMA basins, where additional strategies are required to mitigate <u>current</u> pumping. The strategy can also be implemented rather rapidly through FCGMA actions.

Description

Current policies and ordinances limit the use of groundwater produced from within the FCGMA to only those areas within the boundaries of the Agency with only rare exceptions. In 1997, original or prior historical uses outside the FCGMA boundary that were not known in 1985 were allowed through grandfathering of these uses. Since 1997, however, recent aerial photo analysis of new developments and additional crops grown near the FCGMA boundary indicate that there is a "fringe" of crops or additional lands being irrigated outside the boundary that are apparently being irrigated by groundwater

produced from within the FCGMA. In most cases, these crops are contiguous across the FCGMA boundary from inside the boundary to outside the boundary; in some cases, the crops are grown on a parcel that spans the boundary. Some of these crops may have been planted in earlier years, but air photo analyses indicate that a portion of the crops have been planted in the last several years.

When the FCGMA was formed, it was envisioned that some undeveloped acreage within the FCGMA would be developed in the future and would create a new water use. A baseline allocation of one acre-feet per acre of water was to be allocated to any newly-developed lands. However, this baseline allocation was only for land within the FCGMA boundaries. If groundwater produced from inside the FCGMA boundaries was used on adjacent hillsides outside of the FCGMA boundary, this new irrigation would provide considerable extra draft on the groundwater basins. This additional draft on the aquifers is counter to all the FCGMA policies aimed at reducing pumping in the overdrafted aquifers.

Preventing this additional draft on the aquifers is clearly a high priority of this management plan. It appears that current ordinances and policies of the FCGMA may be sufficient to deal with its export issue, but this should be reviewed. What is needed is a regular procedure to both educate pumpers of the export policy and to identify areas where this policy has been violated. It is recommended that the FCGMA developed such a procedure and determine how to address past and current violations of this policy.

Potential Effectiveness

Preventing additional draft on the groundwater basins of the FCGMA is equivalent in effectiveness to pumping reductions. Many of the areas where water is exported across the FCGMA boundary are adjacent to the Pleasant Valley and Las Posas basins where lowered groundwater levels are particularly apparent. Therefore, much of this additional draft on the groundwater basins is occurring in the areas of the aquifer that can least sustain them. This fact increases the effectiveness of preventing these water exports.

CONTINUATION OF 25% PUMPING REDUCTION

This strategy is already in place, but needs to be reviewed, especially in light of groundwater modeling results presented here.

Description

Current FCGMA management strategies include the 25% reduction in pumping allocation that was called for in the original management plan. This management strategy is to continue the planned reductions as they were originality intended -- the planned reduction to 20% of allocation occurring at the end of 2006 (delayed from 2005) and the 25% reduction occurring according to the 2010 schedule. These reductions were to stay in force until the FCGMA basins are no longer in overdraft and there is sufficient water for recharge to compensate for the increased pumping created when the restrictions are removed.

Potential Effectiveness

The original 25% pumping reduction has had the effect of reducing both M&I pumping and agricultural pumping (see section *Effectiveness To-Date of Current Management Strategies*). The effect of continuing the phased reductions to the full 25% reduction was modeled using the Ventura Regional Groundwater Model. This model scenario assumed that pumping reductions beyond the current 15% reduction were applied only to M&I pumping; it was assumed that any agricultural wells currently using their reduced pumping allocation for FCGMA reporting would simply shift to an efficiency calculation, rather than further reduce pumping. The results of the modeling suggest that these additional pumping reductions, which amount to 3,800 acre-feet per year throughout the FCGMA, would raise groundwater levels in the Upper Aquifer System by a little over one foot at the Port Hueneme coastline and raise Lower Aquifer System groundwater levels by an average of a little over two feet. BMOs for groundwater levels would be met 53% of the time in the Upper Aquifer (compared to 51% with current management strategies) and 7% of the time in the Lower Aquifer (compared to 5% with current management strategies).

RIVERPARK RECHARGE PITS

This strategy is being implemented through a Joint Powers Agreement between the City of Oxnard and United Water Conservation District.

Description

Decades of relatively unrestricted deep gravel mining beginning in the 1950s created a series of large open pits (formerly owned by S.P. Milling) along the Santa Clara River within the Oxnard Plain Forebay basin that are now unused and expose groundwater in the pits to evaporation and potential contamination. As part of an agreement between the City of Oxnard, a developer (Riverpark), the FCGMA, County of Ventura, and UWCD, these pits are being stabilized and urban surface drainage is being diverted away from the pits. If all the work on the pits is accomplished appropriately, the plan is to have UWCD operate the pits as a recharge and storage facility. UWCD would build a water conveyance system that would allow flood flows diverted at the Freeman Diversion to be transported to the Riverpark pits for recharge. These facilities would allow increased diversions of the Santa Clara River; silt-laden river water could be diverted and recharged, water that now must be bypassed and which flows to the ocean following large rainstorms.

Use of the Riverpark pits serves two purposes for the aquifer. First, the facilities will allow additional recharge to the aquifers from silty water that is now bypassed at the Freeman Diversion. Second, the project moves a portion of the Forebay recharge further down-gradient in the basin, away from the recharge mound that forms in the upgradient portions of the Forebay basin beneath the UWCD Saticoy Spreading Grounds. Thus, more recharge water will infiltrate into the Forebay during wet years, a time when a recharge mound builds in the upgradient portion of the basin and reduces recharge rates in existing spreading facilities. No FCGMA policy changes would be required to implement this project.

Potential Effectiveness

UWCD has analyzed the effectiveness of the Riverpark recharge project by combining UWCD's surface water model with the Ventura Regional Groundwater Model. This modeling suggests the yield of the project could be as much as 4,000 AFY (combined with a higher diversion rate at the Freeman Diversion), with the annual yield ranging from 400 AF in dry years to 11,500 AF in wet years. This additional recharge in the Forebay will raise water levels in the basin, which helps pressurize the greater Oxnard Plain. In addition, higher water levels in the Forebay basin will help mitigate the effects of other projects described in this management plan that rely on increased pumping in the Forebay.

The results of the groundwater modeling suggest that BMOs for groundwater levels would be met 52% of the time in the Upper Aquifer (compared to 51% with current management strategies) and 6% of the time in the Lower Aquifer (compared to 5% with current management strategies).

POTENTIAL FUTURE MANAGEMENT STRATEGIES

Groundwater modeling indicates that additional management strategies are required to eliminate overdraft in both Upper Aquifer and Lower Aquifer System aquifers and to prevent further seawater intrusion along the coastline and saline intrusion in more inland areas. A variety of potential future strategies are ranked below, with those that are the most effective and can be implemented the soonest discussed first. Because of the large number of strategies, they are separated into those that can be implemented within 5 years, 10 years, 15 years, and greater than 15 years.

5-YEAR STRATEGIES

The following strategies that can be implemented within five years are ranked by order of effectiveness and/or importance.

5-YEAR UPDATE OF FCGMA MANAGEMENT PLAN

Description

It is recommended that this Plan be updated every five years. This update should include a status of how the BMOs are being met, effectiveness of strategies that have been implemented, status of other recommended strategies, and recommendations for any additional management strategies.

Potential Effectiveness

Updating the Plan every five years will be an effective milestone for the FCGMA to evaluate and re-evaluate its course of action. This will keep the FCGMA's goals and its successes and failures front and center where they belong.

A PLAN TO SHIFT SOME PUMPING BACK TO UPPER AQUIFER SYSTEM

Description

One of the initial groundwater management strategies for the FCGMA was to shift pumping to the Lower Aquifer System from the Upper Aquifer System to relieve pumping stresses that created a pumping trough in the UAS on the Oxnard Plain basin. This was accomplished by requiring new and replacement wells to be drilled in the LAS. Now that it is clear that the LAS cannot accommodate all this new pumping, it would be prudent to move some of the LAS pumping back to the UAS. However, this must be done very carefully to prevent a shift that would again create problems in the UAS.

A shift in pumping back to the UAS has already been initiated through County well permitting requirements. However, this shift cannot be uniformly enforced across the basins within the FCGMA. A detailed plan must be formulated that takes into account local recharge sources, hydrologic connection between portions of the basin, and current/future in-lieu recharge projects. This should be accomplished through use of the Ventura Regional Groundwater Model in fine-tuning the details of this plan, with the FCGMA, VCWPD, and UWCD working together.

Potential Effectiveness

By shifting pumping from the LAS to the UAS in areas where the Lower Aquifer System is not readily recharged could substantially raise groundwater levels in critical areas of the basins. This strategy only works, however, if the increased UAS pumping can be accommodated by the shift in pumping. For this reason, a sophisticated tool such as the Ventura Regional Groundwater Model is required to predict where and how much pumping should be shifted.

For an indication of how this strategy might work, 5,000 AFY of Lower Aquifer pumping was moved to the Upper Aquifer in the triangular area of the south Oxnard Plain from the Port Hueneme zone of low conductance (fault?) to the western edge of the Pleasant Valley basin. The results of the groundwater modeling suggest that BMOs for groundwater levels would be met 50% of the time in the Upper Aquifer (compared to 51% with current management strategies) and 9% of the time in the Lower Aquifer (compared to 5% with current management strategies) – raising Lower Aquifer water levels at BMO wells an average of 8 feet (Table 7).

PROTECT CURRENT SOURCES OF RECHARGE

Description

Protecting current sources of recharge to the FCGMA basins is particularly important as we face additional groundwater management problems. Maintaining Santa Clara River flows and water quality has been a focus for Ventura County over the past decade. The County of Ventura and UWCD went to court in the late 1990s to ensure that increasing land development and water use in the Santa Clarita area of Los Angeles County did not jeopardize Santa Clara River flows across the County line into Ventura County. More recently, local water agencies and especially the farming community have expressed concerned about rising chlorides from waste water discharges coming from Los Angeles

County. It is very important to the FCGMA to continue to protect this important source of groundwater recharge through support of local agencies who deal directly with these issues.

On Calleguas Creek, where a portion of the flow originates from discharges produced by wastewater treatment plants, downstream users have come to rely on the increase flows in the Creek for recharge. Agreements on wastewater discharges flowing down Arroyo Santa Rosa resulted in the Conejo Creek project. Similar flows along the Arroyo Las Posas provide recharge to the Las Posas basins and the northern Pleasant Valley basin. The Arroyo Las Posas flows are augmented by discharges from the Simi Valley and Moorpark wastewater treatment plants and from dewatering of shallow groundwater in western Simi Valley. Similar to the Santa Clara River, maintenance of these flows is necessary to recharge the downstream groundwater basins.

Potential Effectiveness

The current sources of recharge to the groundwater basins within the FCGMA are essential not only in maintaining current management strategies but also in implementing future strategies. Without protecting current recharge sources, the overdraft within the FCGMA could increase and negate some of the benefits realized by projects and strategies that have been very successful to date. Therefore, this strategy is one of the most effective in reducing overdraft, and is an essential FCGMA strategy.

LIMITATION ON NITRATE SOURCES IN PORTIONS OF THE OXNARD PLAIN FOREBAY BASIN

Description

High nitrate concentrations are present in groundwater in portions of the Oxnard Plain Forebay basin (see section *Nitrate in Groundwater*). The source of a portion of this nitrate is from fertilizer use on overlying crops. A thick vadose zone (unsaturated zone) between the crops and the groundwater table allows natural processes to degrade some of the nitrate before it percolates with irrigation waters down to groundwater. Gravel pits within the Forebay were generally mined to five feet above historic groundwater levels, with reclamation plan restrictions on growing high-nitrate use crops within the mined pits where the vadose zone is so limited. As reclamation is completed, however, there are no longer crop restrictions. Thus, high-nitrate crops could be grown in these former gravel basins with a limited vadose zone.

The FCGMA should take a leading role in preventing further nitrate contamination in the Forebay. The FCGMA should work with land use planners and the Regional Water Quality Control Board to ensure that high-nitrate crops are not grown in areas with a limited vadose zone caused by gravel mining.

Potential Effectiveness

Limiting sources of nitrate is the most effective method of reducing nitrate in groundwater. Because nitrate is a primary drinking water contaminant that can cause serious adverse health effects and because the Forebay is a primary source of drinking

water for consumers across the Oxnard Plain, limiting sources of nitrate should be a high priority for the FCGMA.

POLICY ON RECOVERY OF CREDITS FROM OXNARD PLAIN FOREBAY BASIN

Description

There are several management strategies that involve increased pumping in the Oxnard Plain Forebay basin to either supply water to overdrafted areas (e.g., Saticoy Wellfield) or to recover FCGMA credits earned by reducing pumping in overdrafted areas (e.g., Supplemental M&I Water Program, GREAT project). Using the Forebay in such a manner is definitely beneficial to both the Pleasant Valley and Oxnard Plain basins – however, it must be done in a manner such that the added pumping stress in the Forebay can be accommodated. For the Saticoy Wellfield and the Supplemental M&I Program, there is a caveat that pumping not occur when groundwater levels have dropped below a certain threshold. This threshold is the same as the grant condition applied to the use of water from the Freeman Diversion by the State Water Resources Control Board – that there is no more than 80,000 AF of available storage in the Forebay. In practice, this means that the average of combined groundwater levels of two index wells in the Forebay be above a certain level.

To assure a uniform policy, the FCGMA should implement a general policy for all projects that use FCGMA credits to shift pumping from overdrafted areas to the Forebay. It is recommended that this policy follow the State Board criteria discussed above and delineated in Table 8. In addition, pumping using these credits should not adversely impact other pumpers in the basin. How these adverse impacts are defined will depend upon the specifics of each project and will have to be detailed when individual projects are approved by the FCGMA. It is also recommended that the FCGMA establish a policy for prioritizing the types of projects that can use transferred credits to pump in the Forebay. This will be especially important if there is more demand for these transfer projects than the Forebay can accommodate.

Wells Used	Groundwater Elevations
2N/22W-12R1 2N/22W-22R1	>17 ft above msl for combined groundwater elevations

Table 8. Criteria for using Credits for extraction in the Oxnard Plain Forebay basin.

Potential Effectiveness

Shifting pumping from an impacted area to the Forebay through the use of FCGMA credits is a very effective strategy, providing that this pumping doesn't adversely impact the Forebay. Using the criteria outlined in the previous paragraph, Forebay impacts can be avoided or mitigated.

VERIFICATION OF EXTRACTION REPORTING

Description

Meters are required to be installed on all but domestic wells by Chapter 3 of Ordinance 8, although not all pumpers have installed meters or use their meters for reporting extractions. In addition, all extractions are self-reported and the accuracy of FCGMA extraction records relies on correct self-reporting. To ensure the accuracy of extraction records, which are used by the FCGMA and others to determine the changing pumping stress on the aquifers in the FCGMA, it is recommended that the FCGMA make periodic random checks on a small number of meters annually to ensure that meters are correctly installed and that the extractions reported by pumpers to the FCGMA correctly reflect actual meter readings.

Potential Effectiveness

The accuracy of FCGMA reporting records is important for extraction trends, determination of credits and efficiency, and overall compliance with pumping reductions. It is essential that all pumpers believe that everyone is "playing by the rules" and a verification procedure could help ensure that pumpers continue to believe that everyone is in this together.

SEPARATE MANAGEMENT STRATEGIES FOR SOME BASINS

Description

The initial FCGMA Management Plan treated all the FCGMA basins the same in that the same rules applied to all basins. We now know more about how these basins are interconnected and whether some of the basins have unique circumstances. For example, we know that the East Las Posas basin is largely hydraulically disconnected from both the West Las Posas basin and the northern Pleasant Valley basin. However, these basins also share some common elements; for instance, the East Las Posas basin and northern Pleasant Valley basin share a common recharge source, the Arroyo Las Posas. One element common to all the FCGMA basins is that they are overdrafted. Current FCGMA management strategies such as pumping reductions are thus appropriate to all the basins.

The FCGMA has already individualized some management strategies. In the South Las Posas basin, for instance, a project to pump and treat poor-quality water without an allocation has been approved by the FCGMA Board. The strategy of moving pumping away from coastal areas applies largely to the Oxnard plain basin.

New strategies in this Management Plan are also applied to specific situations in each basin. The Management Plan for the East Las Posas basin, included as Appendix C, addresses issues specific to the operation of Calleguas' ASR project. This plan is adopted as part of the overall FCGMA Management Plan and the FCGMA Board will consider how its elements will be integrated into FCGMA ordinances. Likewise, the strategies for potentially pumping shallow groundwater along Calleguas Creek are also specific to the Pleasant Valley basin. The basin management objectives of this plan are also specific to each basin.

The FCGMA-wide strategy of pumping reductions across all FCGMA basins engenders the most discussion of whether this is appropriate in all cases. As discussed in the section entitled *Continuation of 25% Pumping Reductions*, these reductions are appropriate across all FCGMA basins as long as there is overdraft in all basins. It would be appropriate, however, to re-evaluate any future additional pumping reductions by examining each basin separately.

Potential Effectiveness

The current strategy of allowing specific policies to address individual basin problems is the most effective means of addressing the overdraft and water quality problems within the FCGMA.

FCGMA BOUNDARY

Description

The FCGMA boundary is defined as the outer edge of Fox Canyon Aquifer. In most areas, this outer edge is either the outcrop of the Fox Canyon Aquifer (such as along the north and east flanks of the Las Posas basin) or is the point where the Fox Canyon Aquifer onlaps older rocks (such as along the east side of the Pleasant Valley basin). However, along the western boundary of the FCGMA, it is defined as the western edge of the Oxnard Plain Forebay and Oxnard Plain basins (west of which the Fox Canyon Aquifer is not identified). Thus, this western boundary is also the boundary between the Oxnard Plain and Mound basins or the Oxnard Plain Forebay and Santa Paula basins (Figure 2).

Recent work done as part of the Santa Paula Basin Stipulated Judgment has moved the southern boundary of the Santa Paula basin farther north to coincide with the current known location of the Oak Ridge fault. This boundary of the Santa Paula basin was agreed to by experts working for the parties in the Santa Paula Basin Stipulated Judgment, including UWCD, the city of San Buenaventura, and the Santa Paula Basin Pumpers Association. In addition, UWCD groundwater staff have carefully monitored groundwater elevations in wells on both sides of this Santa Paula basin boundary and have confirmed that groundwater elevations south of the adjudicated basin boundary respond to recharge operations in the Oxnard Plain Forebay basin, whereas groundwater elevations to the north of the boundary do not. In addition, there is a significant discontinuity in groundwater elevations from one side of this boundary to the other.

The practical effect of this change in the Santa Paula basin boundary is that there is now a small region between the old and new boundary of the Santa Paula basin that is not managed under either the Santa Paula Basin Stipulated Judgment or FCGMA rules and regulations. Because this area is in hydrologic continuity with the remainder of the Oxnard Plain Forebay basin, it would be appropriate to move the FCGMA boundary slightly north and east to coincide with the reinterpreted boundary of the Santa Paula basin and to reflect the reality of the continuity of this area with the Oxnard Plain Forebay basin. It is recommended that the FCGMA consider making this boundary change based on the technical information available.

Potential Effectiveness

By allowing a strip of land to be unmanaged through either the Santa Paula Stipulated Judgment or the FCGMA, it is possible to site wells on this strip of land and directly benefit from the significant recharge that takes place in the Oxnard Plain Forebay basin, meanwhile adversely affecting downgradient portions of the aquifers that rely on this recharge to repel seawater intrusion. By bringing this area into the FCGMA, wells sited in a strip of land will appropriately be subject to FCGMA extraction allocations and other management strategies. If the land described here is not brought into the FCGMA, it could invite unmanaged pumping that would adversely affect the basins within the FCGMA.

IRRIGATION EFFICIENCY CALCULATIONS

Description

Current FCGMA policies allow agricultural pumpers to meet a crop efficiency standard for their irrigation as an alternative to the Historical or Baseline allocation and credit program. This option is called the Irrigation Efficiency allocation. FCGMA efficiency calculations are based on daily information from a set of weather information gathering stations maintained across the FCGMA. Water demand for an index crop (cool season grass) is calculated daily. A crop factor is then applied to this index water demand to adjust the required water demand downward for four major categories of crops grown within the FCGMA. The final step in calculating crop irrigation efficiency is to adjust for 80% irrigation efficiency by taking the annual allowed water demand for each of the four major crop types and allowing an extra 20% water use for salt leaching and irrigation-system inefficiencies. The Irrigation Efficiency allocation was intentionally designed to make it possible for growers to sustain profitable agriculture within the FCGMA, but at the same time raise awareness of water conservation.

In practice, Irrigation Efficiencies that pumpers report to the FCGMA are as a rule quite high – 100% to as much as 300% (water use as little as one third of estimated demand). This suggests the method of calculating Irrigation Efficiency may not be appropriate. Improving the method would not affect the vast majority of pumpers who now report high efficiencies. However, it may identify any pumpers who are not using irrigation water efficiently by making it more difficult for them to reach the minimum required efficiency. It is recommended that the FCGMA Board consider a strategy to examine the method of calculating Irrigation Efficiency. Topics to consider might include adjusting crop demand for more specific crops, re-examining the 80% efficiency requirement, and ensuring that acreages reported be actual irrigated acreage rather than total owned acreage.

Potential Effectiveness

It is not clear exactly what amount of reduction in agricultural pumping would occur by adjusting the Irrigation Efficiency calculation. As documented elsewhere in this Management Plan, agricultural pumping reported to the FCGMA has been reduced by as much as 30% since the FCGMA pumping restrictions were initiated. Thus, most agricultural pumpers have apparently increased their irrigation efficiency substantially over the last 15 years. As discussed above, the vast majority of those efficient pumpers

are unlikely to be affected by any changes in the Irrigation Efficiency calculation. However, changes in the efficiency calculation might affect those pumpers who have not already improved their irrigation efficiency.

The actual reduction in FCGMA water use from a change in calculation method is not likely to be very large, if any. The issue is more one of perceived fairness – by agricultural pumpers who have already invested time and money in improving their efficiencies and by M&I pumpers who must reduce their pumping by 25% by 2010 without having any type of efficiency method available.

ADDITIONAL STORAGE PROJECTS IN OVERDRAFTED BASINS

Description

Aquifer Storage and Recovery (ASR) projects, such as the Las Posas Basin ASR project, provide benefits to an overdrafted basin because water stored in the basin raises groundwater levels above what they would be without the project. The water is not permanently devoted to the basin, but is removed from time to time, generally during periods of water shortage in droughts or emergencies. In practice, the water generally remains in storage for multiple years and is not completely removed during extraction periods. Thus, there is a long-term benefit to the basin. Such projects need to be carefully designed so that neither recharge nor recovery adversely affects other users in the basin. The recovery periods generally cause a significant decline in water levels in the vicinity of the ASR wellfield, especially if the ASR is operated in a confined aquifer setting.

ASR projects are most effective in areas where groundwater levels have been substantially lowered by overdrafting. Within the FCGMA, the Pleasant Valley and south Oxnard Plain areas are both candidates for ASR projects because of groundwater levels continuously being well below sea level. Saline intrusion in a portion of the south Oxnard Plain would need to be hydrologically isolated from any ASR project to protect the stored water from degradation and to prevent additional intrusion of saline waters during extraction of the stored water. An ASR project could be paired with a barrier well project (discussed in a following section).

The available storage space in the Pleasant Valley and southern Oxnard Plain basins has not been vigorously calculated. The amount of water that has been extracted from coastal areas in excess of recharge has been calculate as about one million acre-feet since the 1950s (UWCD, 2006), with permanent loss of aquifer storage capability from resulting subsidence of about 200,000 AF. The remaining 800,000 AF of potential storage space in the aquifer has been partially refilled by intruded seawater, but there remains a large amount of potential aquifer storage space available.

Potential Effectiveness

Storage projects can be effective in restoring groundwater levels in overdrafted basins. However, the restoration only occurs during the period when water is stored in the basin. For many storage projects, the period of storage can be many years and not all the stored

water may be removed during the extraction phase of the project – in that case, there is a long-term positive effect on the basin.

There are two issues that must be addressed with any storage project to ensure that the project does not adversely impact a basin: 1) the storage project must not interfere with recharge to the basin by creating groundwater levels so high that there is rejected natural and artificial recharge; and 2) extraction of stored water must not adversely affect the basin and other pumpers by pulling in poor-quality water, dewatering clays and creating subsidence, or creating large cones of depression around project extraction wells that prevent nearby pumpers from using their wells efficiently. Mitigation of such potential impacts may be feasible. Higher groundwater levels from storage projects may also mask continuing overdraft in a basin, so it s essential to continually determine what the basin condition would be without the storage project. Such safeguards are part of the East Las Posas Basin Management Plan (Appendix C) with regards to the Las Posas Basin ASR project.

PENALTIES USED TO PURCHASE REPLACEMENT WATER

Description

The FCGMA charges a penalty to pumpers for extracting more water than is allowed under the various allocations (Historical, Baseline, Irrigation Efficiency). Up to 2006, this has not generated significant revenue because few pumpers have exceeded their allocation. There may be circumstances in the future, however, where this may not be true. The increased groundwater use caused by the over-pumping could be offset by using the fees generated by penalties to purchase replacement water for the extracted groundwater. This is a strategy used by the Orange County Water District, where the penalty is called a Basin Assessment Fee. The FCGMA has several options to obtain additional water, including purchasing unused portions of Ventura County's State Water Allocation, paying M&I users to increase their imported/groundwater blend, and purchase of water through a variety of programs from the State or others such as turnback pool water, Dry-Year Purchase Program, and other programs. This water could be delivered through either conveyance down the Santa Clara River or Calleguas MWD's pipeline, depending upon how the water was purchased and used.

Potential Effectiveness

A FCGMA policy to purchase water to replace over-pumped groundwater would have a direct effect on the aquifers. If the replacement was done judiciously, more water could be purchased than was originally pumped and/or the water could be used for recharge particularly stressed areas such as the southern Oxnard Plain basin or the Pleasant Valley basin. Thus, the replacement water could actually improve groundwater conditions.

ADDITIONAL WATER CONSERVATION

Description

There is a growing move to require the use of recycled water to replace non-potable uses in new developments in California. The FCGMA could encourage local cities and other planning agencies to require a dual plumbing system (where it meets plumbing code) in

new developments where it is practical to deliver recycled water of suitable quality. The FCGMA could make this policy known to the permitting agencies through both a resolution sent to these organizations and by commenting on this issue when reviewing EIRs and other planning documents. This policy would be consistent with the requirements in some areas within the Agency, such as the County policy that requires all new golf courses to use 100% reclaimed water and the City of Camarillo and City of Port Hueneme that require dual plumbing systems in new larger developments.

Another water conservation strategy is to require maximum feasible infiltration of stormwater within a new development (Low Impact Development). This strategy is only effective when the development overlies a recharge area for the aquifer. When a development overlies perched water or sealing clay near the surface, the infiltrated water does not benefit the aquifers.

Potential Effectiveness

The effectiveness of this policy in reducing pumping depends upon the amount of groundwater that would otherwise be pumped from groundwater and delivered to the project. Many water purveyors within the FCGMA serve a blend of groundwater and imported water, so the pumping savings would be in the groundwater component. The savings would also depend upon the amount of non-potable water needs or uses within these projects. Where there is substantial landscaping in a new project, for example, the savings in potable water would be more substantial. In developments that require a dual plumbing system, there have been estimated savings of 30% to 40% in potable water use just from outdoor landscaping.

As discussed above, the effectiveness of maximizing recharge of stormwater can be variable. When a development is located in a basin such as the Oxnard Plain Forebay, percolation of rain is an important component of recharge and should be protected. In areas where percolated surface water does not reach the aquifers, the strategy is not effective.

SHELF LIFE FOR CONSERVATION CREDITS

Description

The initial 1985 FCGMA Management Plan set the policy that when a well operator pumped less than his allocation in any particular year, Conservation Credits were awarded for the unpumped portion of the allocation. The theory behind the Conservation Credit policy was that pumping would vary between wet and dry years; credits would be earned during wet years when pumping was reduced and the credits would then be used during the dry years when above-average pumping was required. With this scheme, pumping credits would theoretically zero-out at the end of each wet-dry cycle. However, no process was put in place to assure that large numbers of Conservation Credits were not accumulated beyond the end at each wet-dry cycle. The practical result of this policy is large numbers of Conservation Credits continue to accrue to some well owners — as many as tens of thousands of acre-feet of Conservation Credits have accrued to some organizations with multiple wells.

The current method of accumulating Conservation Credits with no expiration date has effectively left a large theoretical pumping debt on the aquifers. This large debt complicates evaluation of the health of the basin because current groundwater conditions do not reflect this unused pumping debt. This is no different than judging a company's financial condition without considering monetary debt. In the nearby Santa Paula basin, the Stipulated Judgment from the basin adjudication also allows unpumped allocations to be accumulated, but unlike in the FCGMA, any unpumped allocations for a single year expire after seven years. In this manner, accumulated debt is restricted to unpumped allocations earned within any single wet-dry cycle.

To bring FCGMA policy into line with the purpose for which credits were originally intended, credits earned during a period of lower pumping should be available for a period of time that reflects a reasonable management strategy. For agriculture, credits may be accrued for both future drought conditions and cropping changes. M&I pumpers may have accrued credits by substituting more-expensive imported water to provide a drought or emergency buffer. To ensure that any change in credit policy reflects these varying management strategies, the FCGMA should consider forming a committee (similar to the one that suggested the policy on calibration of meters) to study the issue and make recommendations on any policy changes. There are two issues that would need to be addressed – the shelf life on credits to be earned in the future and the fate of credits earned in the past.

This policy is not appropriate for Storage Credits, where water is stored for both dry periods and for emergencies such as earthquakes or levee failures in the Sacramento Delta. No change is recommended for Storage Credits.

Potential Effectiveness

The current policy for Conservation Credits allowing continuing accumulation makes it difficult to determine the current health of the basin – especially when the current pumping debt is equivalent to about three years' total pumping within the FCGMA. Modifying the FCGMA policy to expire older credits would allow a more accurate view of the health of the basin and would prevent a large pumping debt from accumulating. The effect a changed policy would have on future extractions within the FCGMA is not clear. On one hand, credit holders might be encouraged to pump credits prior to their expiration. This might effectively increase FCGMA pumping over its current levels, because some of these credits are currently being accumulated instead of being pumped. Alternatively, under the current policy of accumulating credits, many years-worth of accumulated credits could be pumped in a single dry year far exceeding any annual recharge, adversely impacting the groundwater basins through pulling in poor-quality waters and/or causing irreversible basin subsidence.

10-YEAR STRATEGIES

The following strategies that can be implemented within ten years are ranked by order of effectiveness and/or importance.

ADDITIONAL IN-LIEU RECHARGE TO SOUTH OXNARD PLAIN

Description

One of the most effective management strategies in reducing overdraft is to supply water directly to overdrafted areas. This in-lieu strategy has been very effective in the Upper Aquifer System, where Santa Clara River water delivered through the Pumping Trough Pipeline has helped to alleviate the pumping trough that has been present for several decades beneath the south Oxnard Plain. Because the Lower Aquifer System now has its own pumping trough beneath the same area, extending the Pumping Trough Pipeline and/or bringing in water from other sources to the south Oxnard Plain would likely be equally as effective.

There are several options available to implement this strategy. UWCD could extend the Pumping Trough Pipeline to supply water to pumpers who are south of the current pipeline. The source of this water would likely be a combination of diverted Santa Clara River water and groundwater pumped from the Saticoy Wellfield located in the Oxnard Plain Forebay basin. UWCD has investigated such a project in the past, but costs were prohibitive. Another method of bringing water to the area would be to use Calleguas MWD's regional brine line (under construction in 2006) to bring recycled or other water from upstream areas, providing this water was of sufficient irrigation suitability. A third option would be to use water from Oxnard's GREAT project either for direct delivery to pumpers or for injection into the Lower Aquifer System. Any water delivered through an in-lieu program to this area should be eligible for credits. If there is any transfer of pumping back to the Oxnard Plain Forebay basin as part of a project using this strategy, then the considerations discussed in section *Policy on Recovery of Credits from Oxnard Plain Forebay Basin* would be applicable.

Potential Effectiveness

Reducing pumping and/or injecting water into the aquifer in areas just inland of seawater intrusion can be a very effective strategy. Simulations of the Ventura Regional Groundwater Model that implement this management strategy have been shown to be effective in reducing the overdraft. For example, when 3,000AFY of additional water are delivered or injected in the south Oxnard Plain, groundwater levels in the Lower Aquifer System rise by an average of 7 feet. The results of the groundwater modeling suggest that BMOs for groundwater levels would be met 53% of the time in the Upper Aquifer (compared to 51% with current management strategies) and 7% of the time in the Lower Aquifer (compared to 5% with current management strategies).

IMPORT ADDITIONAL STATE WATER

Description

As part of a joint integrated water management plan, UWCD and Calleguas MWD are considering expansion of State Water importation by obtaining additional amounts of Ventura County's State Water allocation on a year-by-year basis when it is not used by other Ventura County agencies. This additional water would likely be delivered to Lake Piru and released as part of UWCD's conservation release to benefit the Oxnard Plain. Currently, State Water is released from Lake Piru by UWCD as part of its conveyance of stored storm water to downstream basins. Typically, a portion of the released water percolates into basins upstream from the Freeman Diversions and the remainder of the water is diverted for recharge (direct and in-lieu). How this additional State Water is used and accounted for will likely depend upon how it is financed.

Potential Effectiveness

The effectiveness of new water importation depends upon how the water is recharged to the aquifers or delivered. If this imported water could be delivered to FCGMA pumpers in-lieu of pumping groundwater, then there would be a direct benefit to the aquifers from reduced pumping proportional to the amount of imported water. If, instead, this water was extracted by pumpers and substituted for a like amount of the imported water that would they would otherwise have delivered by Calleguas MWD, then the effects of the importation would be neutral. Thus, the ultimate fate of this additional imported water would govern the effectiveness of the strategy.

The Ventura Regional Groundwater Model was used to test the effectiveness of importing additional State Water. For the model scenario, the water was imported through Lake Piru, released with UWCD's annual conservation release down the Santa Clara River, diverted at the Freeman Diversion, and recharged in the Oxnard Plain Forebay basin. For the model simulation, it was assumed that 10,000 AFY of additional State Water were purchased in dry and average years. The results of the groundwater modeling suggest that Upper Aquifer groundwater levels in the Forebay basin would rise by an average of 6 feet. BMOs for groundwater levels would be met 54% of the time in the Upper Aquifer (compared to 51% with current management strategies) and 7% of the time in the Lower Aquifer (compared to 5% with current management strategies).

FURTHER DESTRUCTION OF ABANDONED OR LEAKING WELLS

Description

With grant support, the FCGMA destroyed 49 abandoned or leaking wells that were considered by the FCGMA and UWCD to have the highest potential for cross-contamination from perched waters into the main aquifers within the FCGMA (cost and feasibility were also considered in ranking the wells for destruction). There remains a long list of additional wells that also have the potential for cross contamination of the aquifers. The FCGMA should give a priority to finding additional funds to continue this effort of well destruction.

Potential Effectiveness

Destroying abandoned or leaking wells is very effective in preventing cross contamination of aquifers within the FCGMA. In the Oxnard Plain and Pleasant Valley basins, perched waters have a much higher head (elevation) than underlying aquifers, so the conditions for cross contamination are widespread. Although there are documented cases of this cross contamination occurring, it is not known how widespread this has actually occurred.

ADDITIONAL MONITORING NEEDS

Description

The current groundwater monitoring program has worked well in tracking saline intrusion beneath the Oxnard Plain. This monitoring network, along with a few other monitoring wells, were installed around 1990 by the US Geological Survey with financing provided by local agencies. Since the initial installation of the monitoring network, the continuing monitoring of these wells has been conducted by UWCD, VCWPD, and the City of San Buenaventura. As the saline intrusion on the south Oxnard Plain has moved inland, UWCD has sited and will drill two new multiple-completion monitoring wells inland of the saline intrusion. This increased monitoring program will adequately track water level and water quality trends on the south Oxnard Plain for the next several years.

In the Pleasant Valley basin, additional monitoring wells might be required if chloride levels continue to increase. The location of these potential monitoring wells would depend upon where the chloride increases occur. In the Las Posas basins, most of the existing monitoring utilizes existing production or injection wells. As part of the East Las Posas Basin Management Plan (Appendix C), new monitoring wells would provide information on the effects of the Calleguas Aquifer Storage and Recovery (ASR) project. Any such monitoring wells would likely be drilled by the Calleguas Municipal Water District. Monitoring of these wells would likely become a part of the overall Calleguas ASR monitoring program.

As more management strategies rely on increased pumping in the Oxnard Plain Forebay basin, increased monitoring will be required to ensure Forebay pumpers are not adversely affected or that pumping does not create additional groundwater problems. Increased monitoring in the Forebay has already been planned during operation of the UWCD Saticoy Wellfield. Additional monitoring should be required by the FCGMA for other projects where pumping will be shifted to the Forebay basin. An example is the GREAT project, where a substantial amount of pumping may be shifted to the Forebay; environmental documentation for the project proposes such increased monitoring. The exact monitoring required for any Forebay pumping that uses a transfer of credits should be appropriate to the location of increased pumping. At a minimum, this monitoring should include collection of monthly groundwater levels and quarterly water quality samples (to include constituents of concern such as nitrate and TDS) should include both Forebay monitoring and monitoring between the Forebay and the coast to determine potential effects in coastal groundwater levels.

Potential Effectiveness

Monitoring by itself does not solve the overdraft problem, but it is essential in determining the effectiveness of the other management strategies. In particular, monitoring provides the continuing evaluation of whether basin management objectives are being met, and often serves to increase the understanding of the dynamics of the multiple aquifer systems identified within the FCGMA.

15-YEAR STRATEGIES

The following strategies that can be implemented within 15 years are ranked by order of effectiveness and/or importance.

BARRIER WELLS IN SOUTH OXNARD PLAIN

Description

Seawater barrier wells are used extensively in Los Angeles and Orange counties as a means of controlling seawater intrusion. A barrier project injects water along a series of wells creating a mound of recharge water as protection against seawater moving inland. Barrier wells are both expensive and complex, with costs of maintaining a barrier several times higher than for typical facilities in Ventura County such as the Freeman Diversion, spreading ponds, and distribution pipelines. In Los Angeles and Orange counties, there is a significant component of recycled water in the injected water. Thus, special health regulations govern this type of injection and are a necessary component of plans and facilities. In Ventura County, an attempt to construct a seawater barrier in the late 1970s and 1980s by the California Department of Water Resources in the Port Hueneme area was not particularly successful. Since that attempt, barrier wells were not seriously considered again because lower-cost options were identified.

We now know portions of the aquifer on the south Oxnard Plain are very difficult to recharge. In particular, the Lower Aquifer System of the south Oxnard Plain has been largely unaffected by spreading operations in the Oxnard Plain Forebay basin because this recharge is partially impeded from flowing into the areas of depressed groundwater levels by a fault or other structural barrier (see discussion in section *Groundwater Basins and Hydrogeology – Oxnard Plain Basin*). The City of Oxnard GREAT project has evaluated barrier wells in the south Oxnard Plain as a method of delivering recycled water during winter months when agricultural irrigation demand is low. It may be prudent to consider expanding winter injection to more seasons of the year to create a full-time barrier. Additional source water for this full-time barrier would need to be identified.

A difficulty with barrier wells is that the injected water must be of very high quality to prevent clogging of the well screens. Thus, the source water for the injection would likely be a combination of highly-treated recycled water and potable water. The expense of building, maintaining, and providing water to a full-time barrier project currently makes such a project for Ventura County a lower priority. If other projects to supply inlieu water to the south Oxnard Plain fail to prevent the increasing intrusion of saline

waters or if a full-time barrier was considered as an add-on to injection wells already built through the GREAT project, then a full-time barrier project might be economically feasible.

As discussed in the section *GREAT Project*, FCGMA credits for recharge in a barrier project might be less than 1:1 because the recharged water might mix with contaminated saline groundwater. Likewise, if these credits are used for extraction from the Oxnard Plain Forebay basin, these extractions would have to follow uniform procedures addressed in the section *Policy on Recovery of Credits from Oxnard Plain Forebay Basin*.

Potential Effectiveness

Barrier wells could be very effective in preventing saline intrusion from moving further inland. Simulations of the Ventura Regional Groundwater Model indicate a barrier project with injection rates of 21,000 AFY into the Lower Aquifer System would raise Lower Aquifer water levels an average of 46 feet at the BMO wells, with an average groundwater elevation at the barrier of 28 ft msl. The rate of injection that was tested in the model was chosen to match the winter injection rate of the GREAT project at full planned implementation.

The groundwater modeling suggests that BMOs for groundwater levels would be met 63% of the time in the Upper Aquifer (compared to 51% with current management strategies) and 48% of the time in the Lower Aquifer (compared to 5% with current management strategies. The barrier project is the most effective strategy modeled in meeting BMOs (Table 7). However, the barrier would not prevent saline intrusion in areas inland of the barrier within the LAS groundwater depression in the Pleasant Valley basin; the only prevention for saline intrusion within the groundwater depression would be to raise groundwater levels within the depression.

INJECTION OF TREATED RIVER WATER INTO OVERDRAFTED BASINS Description

A management strategy that is commonly suggested is taking diversions from the Santa Clara River when there is abundant river flow and injecting it into the aquifers that have depressed water levels. However, raw river water could not be injected without treatment that would bring the water to at least drinking water quality to prevent well clogging and potential health concerns; the cost of this treatment was generally considered to be prohibitive when compared to other management strategies. This assumption may no longer be correct, as treatment costs become more affordable when compared to alternatives.

Much of the infrastructure to convey water from the Freeman Diversion to Pleasant Valley and the south Oxnard Plain already exists. The costs of the injection would be building a treatment facility, installing injection wells, and operating the treatment plant.

This injection would logically operate during periods when there is more water in the Santa Clara River than recharge facilities can accommodate. These conditions occur

following rainstorms during many average precipitation years and can occur for extended periods (several months) during heavy precipitation years. The additional diversions could be conveyed to Pleasant Valley and the South Oxnard Plain via the existing Pleasant Valley and PTP pipelines. The raw water would then be treated and injected. Unlike aquifer storage and recovery (ASR) projects, the water would be placed in the aquifer for recharge purposes and would not be extracted at a later time as part of the project.

Potential Effectiveness

Besides reducing groundwater pumping in areas of lowered groundwater levels, providing direct recharge to affected aquifers is the most effective method of reducing pumping stresses and overdraft.

Injection of treated river water could be very effective in raising groundwater levels in the pumping depression in the south Oxnard Plain and Pleasant Valley basins. Simulations of the Ventura Regional Groundwater Model indicate an injection project with rates into the Lower Aquifer System of 1,500 AFY during dry years to 5,000 AFY during wet years would raise Lower Aquifer water levels an average of as much as 13 feet at the BMO wells in the area of injection.

The groundwater modeling suggests that BMOs for groundwater levels would be met 53% of the time in the Upper Aquifer (compared to 51% with current management strategies) and 11% of the time in the Lower Aquifer (compared to 5% with current management strategies.

INCREASE DIVERSIONS FROM SANTA CLARA RIVER

Description

The Freeman Diversion was designed to divert more river water than current diversions. However, the current water right for the Freeman Diversion permitted by the State Water Resources Control Board is only 375 cfs because other conveyance facilities downstream of the Freeman Diversion were not designed for the higher flow rate. If these conveyance facilities were modified and additional spreading facilities were constructed to physically handle the additional volume of water, a right to a higher diversion rate could be beneficial during periods of high flow in the river. Any higher diversion procedure would have to be designed so that there was sufficient water available for environmental uses. In order to increase diversions at the Freeman Diversion, a modified water right would have to be obtained from the State Water Resources Control Board and appropriate State and Federal agencies would have to be consulted. UWCD is studying options for such an expansion.

Potential Effectiveness

The Santa Clara River remains the primary recharge source for the Oxnard Plain and Pleasant Valley basins. It is clear that increased recharge since the Freeman Diversion was constructed has had a major positive impact in reducing seawater intrusion in the Upper Aquifer System. Likewise, many other strategies of this Management Plan rely on substituting pumping in areas of poor recharge to pumping in the Oxnard Plain Forebay

basin, which is easily recharged by water diverted from the Santa Clara River. Additional diversions and recharge to the Forebay basin, therefore, are necessary to make other management strategies possible.

UWCD's River Routing Model was used to predict the amount of additional diversions that were possible from peak winter storm flows at the Freeman Diversion, within the current 1,000 cfs flow capacity limitation of key portions of the conveyance system. The model, which uses daily flow data, predicted that additional potential diversions ranged from an average of 3,000 AFY during dry years to an average of 43,000 AFY in wet years. This additional water was largely recharged in hypothetical recharge facilities in the Riverpark and Ferro mining pits.

The Ventura Regional Groundwater Model simulations suggest that the additional diversions have several beneficial effects. The additional recharge from the diversions raise groundwater levels in the Upper Aquifer of the Oxnard Plain Forebay basin by more than 10 ft, allowing the Forebay to fully fill during wet years and lessening the impact of the dry-year pumping envisioned in other strategies in this Plan. At Upper and Lower Aquifer wells with BMOs, average groundwater levels would increase by about 3 ft. BMOs for groundwater levels would be met 54% of the time in the Upper Aquifer (compared to 51% with current management strategies) and 8% of the time in the Lower Aquifer (compared to 5% with current management strategies.

SHIFT PUMPING TO NORTHWEST OXNARD PLAIN

Description

The northwest Oxnard Plain, in the area south of the Santa Clara River, has historically had groundwater elevations that have rarely gone below se level. There are also no submarine canyons offshore of the northwest Oxnard Plain, eliminating a short-circuit route for seawater intrusion to reach coastal aquifers. Groundwater gradients in the Upper Aquifer System indicate that some of the water recharged to the UAS in the Forebay likely flows offshore in the coastal northwest Oxnard Plain basin. Thus, this portion of the aquifer might sustain some increased pumping without negative consequences. The amount of pumping that could be shifted to this area would depend upon the configuration of the pumping wells and the volume of pumping.

Potential Effectiveness

If pumping is shifted from areas that are difficult to recharge, such as the LAS in the southern portion of the Oxnard Plain basin and in the Pleasant Valley basin, to areas that are more-easily recharged, the effect is beneficial to the aquifers. Simulations of the Ventura Regional Groundwater Model indicate that with a shift of pumping of 2,000 AFY from near the edge of the Oxnard Plain Forebay basin to the northwest Oxnard Plain basin, groundwater levels improve less than a foot at wells with BMOs, but drop less than a foot in the northwest Oxnard Plain. Because the current groundwater levels in the Upper Aquifer of the northwest Oxnard Plain are more than 6 ft above their BMO, a more substantial shift in pumping could be accommodated, with a like amount of improvement in other areas of the coastal basins.

GREATER THAN 15-YEAR STRATEGIES

The following strategies that would be implemented later than 15 years are ranked by order of effectiveness and/or importance.

ADDITIONAL REDUCTIONS IN PUMPING ALLOCATIONS

Description

After other feasible strategies for reducing the overdraft within the FCGMA are considered, pumping reductions beyond the 25% may have to be examined. As discussed below, any further pumping reductions may not be necessary if most of the strategies discussed in this Plan are implemented. These strategies are likely to be expensive, however, so the FCGMA should retain as a further strategy additional pumping reductions if the means are not found to implement the strategies. Any additional required reductions should be effected using the current system of allocations and efficiencies. If this step is necessary, it would be prudent to revisit whether agricultural efficiency should be tightened up or continue to be used, or whether all pumpers should use the allocation/credit method of reporting.

Potential Effectiveness

The necessity of any further pumping reductions was evaluated using the Ventura Regional Groundwater Model. This modeling suggested that with all strategies implemented, BMOs for groundwater levels would be met 67% of the time in the Upper Aquifer (compared to 51% with current management strategies) and 76% of the time in the Lower Aquifer (compared to 5% with current management strategies. The section *Yield of the Groundwater Basins* discusses the issue of how often BMOs should be met to be protective of the basins in the FCGMA. The above numbers suggest that implementation of all the management strategies would vastly improve the health of the basins. Actual future observations of basin conditions, particularly the fate of sweater intrusion, will determine whether these strategies truly protect the basins. The modeling does suggest that further reductions in FCGMA extractions would not be warranted until the effect of the other management strategies can be observed or unless may of the strategies are not implemented because of financial or other reasons.

ACTION PLAN TO ATTAIN BASIN MANAGEMENT OBJECTIVES

PLANNING/IMPLEMENTATION ACTIONS

STRATEGIC PLANNING

Many of the management strategies in this plan involve considerable cooperation among agencies within the FCGMA and come at considerable cost. The FCGMA is the common element among these agencies and is the appropriate forum in which to discuss the management strategies. Although many of the actual projects that would implement the management strategies would be built and managed by individual agencies within the

FCGMA, the cost of the projects is likely to be spread to a wider group. Projects that have the most advantageous cost/benefit ratios would likely be supported by this wider group.

The FCGMA should initiate the discussion of how all the strategies fit together with current and future project of individual agencies. The topics to be covered could include:

- 1) Cost/benefit analyses of management strategies;
- 2) Cooperative efforts needed;
- 3) Methods to finance the projects;
- 4) Actions to implement the projects.

Parts of the analyses needed for the discussion have already been generated through agency's master planning efforts either within agencies or as larger cooperative efforts, and these plans cold be used as the starting point in these discussions.

IMPLEMENTATION

As a follow-up to the strategic planning effort, the FCGMA should take the results of the strategic planning and facilitate their implementation. The main focus of this effort would be to assist in cooperative efforts to implement the FCGMA management strategies.

RECOMMENDED CHANGES TO EXISTING FCGMA POLICIES

CREDITS TO BE TRANSFERRED TO FOREBAY BASIN

Current water conservation facilities and FCGMA policies encourage reduced pumping in areas of seawater intrusion or overdrafted areas by moving those pumping stresses to areas that are more readily recharged. Examples of these projects are the Oxnard-Hueneme Pipeline system, the Pumping Trough Pipeline, and the Pleasant Valley Pipeline. A more recent transfer is for credits accrued by the Conejo Creek project to be used for extractions from the Oxnard Plain Forebay basin as part of the Supplemental M&I Water Program. The program has criteria to prevent adverse impacts from this increased pumping in the Forebay, including a restriction on pumping when groundwater elevations in key wells in the Forebay are below pre-determined levels.

The FCGMA should establish a policy for future credit transfers to the Forebay. This policy should include both criteria to ensure that projects do not harm the Forebay and to prioritize future projects if there is more demand for these transfers than the Forebay can accommodate. The Conejo Creek-Supplemental M&I Water projects serve as a good model for future projects that would provide in-lieu recharge or injection through wells in overdrafted areas and then recover that water from the Forebay or other areas that are readily recharged. Any such pumping using FCGMA credits should be able to demonstrate that a plan for increased pumping would not adversely impact the basin pumped. The FCGMA should encourage these types of projects, as long as there is a net benefit to the aquifers and the pumping does not adversely affect that basin. Specific

criteria that the FCGMA could use for future projects are discussed in the section *Policy* on Recovery of Credits from Oxnard Plain Forebay Basin.

SHIFT SOME PUMPING FROM LOWER AQUIFER SYSTEM TO UPPER AQUIFER SYSTEM

A shift in pumping back to the UAS has already been initiated through County well permitting requirements. However, this shift should not be uniformly enforced across the basins within the FCGMA. A detailed plan must be formulated that takes into account local recharge sources, hydrologic connection between portions of the basin, and current/future in-lieu recharge projects. This should be accomplished through use of the Ventura Regional Groundwater Model in fine-tuning the details of this plan, with the FCGMA, VCWPD, and UWCD working together.

IRRIGATION EFFICIENCY CALCULATION

As discussed in the earlier section entitled Accurate Irrigation Efficiency Calculations, the irrigation efficiency calculation will be revisited to ensure that the methodology gives appropriate results. The FCGMA Board will convene a committee of experts and stakeholders to examine the efficiency methodology. This committee will incorporate current methods of determining crop demand, including recommending updated weather station technology if necessary. The purpose of this exercise is to ensure that the efficiency calculations submitted to the FCGMA by agricultural irrigators are accurate. Any changes to the methodology should focus on improving actual irrigation efficiency by pumpers and to ensure that pumpers reporting actual groundwater use against their allocation are on the same level field as those using irrigation efficiency.

The committee would also review whether 80% irrigation efficiency is appropriate to current farm management methods or whether this efficiency percentage should be changed. The committee should be convened within six months of adoption of this Management Plan. Recommendations of the committee would be presented to the FCGMA for possible modification of current ordinances.

ADDITIONAL MONITORING

Additional monitoring may be required by the FCGMA when certain management strategies are implemented. For instance, projects that rely upon new pumping from the Forebay basin, as a result of water delivery to areas that are not as readily recharged such as the south Oxnard Plain, may require additional monitoring to ensure that other Forebay pumpers are not adversely impacted. It is recommended that this additional monitoring be a condition of approval for applying pumping credits to the Forebay when they are earned elsewhere within the FCGMA.

Additional monitoring is also required as part of the East Las Posas Basin Management Plan (Attachment C). This additional monitoring is incorporated in the FCGMA Management Plan by reference.

In addition, monitoring should also be required for projects in the future that pump poorquality water without an allocation along Calleguas Creek. This monitoring would focus on detecting both improvements in water quality in the pumped area and un-anticipated changes in water levels or water quality in adjacent portions of the FCGMA aquifers.

USE PENALTIES TO PURCHASE REPLACEMENT WATER

The FCGMA charges a penalty to pumpers for extracting more water than is allowed under the various allocations (Historical, Baseline, Irrigation Efficiency). The increased groundwater use caused by the over-pumping could be offset by using the fees generated by penalties to purchase replacement water for the extracted groundwater. The FCGMA has several options to obtain additional water, including purchasing unused portions of Ventura County's State Water Allocation, paying M&I users to increase their imported/groundwater blend, and purchase of water through a variety of programs from the State or others such as turn-back pool water, Dry-Year Purchase Program, and other programs. This water could be delivered through either conveyance down the Santa Clara River or Calleguas MWD's pipeline, depending upon how the water was purchased and used.

RECOMMENDED ADDITIONS TO FCGMA POLICIES

5-YEAR UPDATE OF FCGMA MANAGEMENT PLAN

It is recommended that this Plan be updated every five years. This update should include a status of how the BMOs are being met, effectiveness of strategies that have been implemented, status of other recommended strategies, and recommendations for any additional management strategies.

SEPARATE MANAGEMENT PLANS FOR SOME BASINS

All of the basins within the FCGMA are managed under an umbrella of this Management Plan. However, there are circumstances in some of the basins that require additional management policies, such as in the East Las Posas basin. It is recommended that the FCGMA Board adopt the East Las Posas Management Plan (Appendix C) by resolution. In addition, the policies on pumping and treating poorer quality groundwater without an allocation should be incorporated into FCGMA policy by adopting this overall FCGMA Management Plan.

It is recommended that no changes be made to current FCGMA pumping reductions that treat all the FCGMA basins the same. It would be appropriate to revisit this policy in the future if basin management objectives have been achieved in a particular basin; the FCGMA Board might consider whether it is appropriate to continue with additional pumping reductions.

ADOPTION OF BASIN MANAGEMENT OBJECTIVES

The basin management objectives recommended in this Management Plan should be adopted by resolution by the FCGMA Board. As additional information becomes known about individual groundwater basins, it may be appropriate to modify the recommended objectives and/or to add additional objectives.

EXTRACTIONS OF POOR-QUALITY WATER WITHOUT AN ALLOCATION

There are additional areas along Calleguas Creek besides the South Las Posas basin where groundwater has elevated salinity. Base flow from the Arroyo Las Posas has migrated completely across the South and East Las Posas basins and into the northernmost Pleasant Valley basin, providing a source of new recharge to this portion of the Pleasant Valley basin. However, this new recharge water has created water quality problems for groundwater pumpers. City of Camarillo wells in this area have experienced increased salts as groundwater levels have risen over the last decade, similar to what has already happened in the South and East Las Posas basins.

Extraction of this groundwater is an appropriate groundwater management strategy providing that either: 1) extracting the groundwater improves the overall water quality in the basin without also causing overpumping of the basin or 2) extracting the groundwater provides a new water supply outside of those currently allocated by the FCGMA. If these conditions are not met, then the extractions should be debited against an existing allocation. In the South Las Posas basin, for example, pumping and treating the shallow groundwater would both improve the water quality and not reduce supplies to the basin (better quality stormwater that now bypasses the basin would then have the ability to infiltrate and replace the pumped water). Alternatively, if shallow groundwater along Calleguas Creek was not hydrologically connected to the main portion of the basin, and pumping that groundwater would have no effect on groundwater in the main basin, then pumping this groundwater could provide a new supply of water. This lack of hydrologic connection would have to be demonstrated using standard geologic techniques. These techniques would include analysis of groundwater levels, water quality parameters, well logs, age-dating, geochemical analyses, or other techniques.

BARRIER WELLS

As discussed in the section Barrier Wells in South Oxnard Plain, construction of injection barrier wells near the coastline to prevent landward migration of saline intrusion is one management strategy. Under current FCGMA policy, any project in the future that has barrier wells as a project component would need FCGMA approval to earn extraction credits that could be used to pump a like amount of groundwater elsewhere within the FCGMA. As discussed in the section Credits to be Transferred to Forebay Basin, there may be issues related to the pump-back. It is recommended that any such FCGMA approval be contingent upon analysis of the potential effectiveness of the barrier in the improving water quality, analysis showing that pumping credits earned by injection that are used elsewhere does not adversely affect the pumped area, and a monitoring program to measure the effects of both the barrier wells and the extraction wells.

PROTECTING RECHARGE SUPPLIES

Because of the importance of preserving current recharge sources for the aquifers and potentially adding additional recharge, the FCGMA adopts a policy that protects these recharge sources. Although the FCGMA cannot determine water rights, it will use its influence with other agencies to ensure protection of the recharge sources. FCGMA

actions might include writing letters of support, discussing the issues with other agencies, and testifying at hearings related to these recharge sources.

NITRATE SOURCES IN OXNARD PLAIN FOREBAY BASIN

It is recommended that the FCGMA develop a policy to limit high-nitrate crops in reclaimed gravel basins where there is little or no vadose zone for degradation of the nitrate before it reaches groundwater. The particulars of this issue are discussed in the section *Limitation on Nitrate Sources in Portions of the Oxnard Plain Forebay Basin*.

ADDITIONAL CONSERVATION MEASURES

It is recommended that the FCGMA Board adopt a policy encouraging all planning agencies within the FCGMA to require dual plumbing in new developments where treated wastewater is feasible for use. As part of this policy, the FCGMA should work with planners to incorporate these policies into general plans and other appropriate planning documents.

VERIFICATION PROCEDURE FOR EXTRACTION REPORTING

It is recommended that the FCGMA establish a verification procedure to ensure that self-reporting of extractions by pumpers to the FCGMA is accurate. This procedure could be as simple as an annual random inspection of a few meters to ensure that the meter is installed and that the readings that are reported to the FCGMA agree with the meter readings.

SUMMARY OF FCGMA MANAGEMENT STRATEGIES

FCGMA management strategies are separated into three categories – current, in development, and future. Each strategy has a short description. For a full discussion of each strategy, refer to the earlier three sections on management strategies. Some of these strategies related directly to FCGMA ordinances and other actions. Many of these strategies are carried out by agencies other than the FCGMA, but FCGMA policies either encourage these projects or make them possible through the credit program.

Current Strategies include those within the original 1985 FCGMA Management Plan and those that have been developed since that time:

- <u>Limitation of Groundwater Extractions</u> 25% phased reduction in pumping, including 80% agricultural efficiency.
- Encourage Both Wastewater Reclamation and Water Conservation Encouraged use of recycled water and water conservation techniques.
- Operation of the Oxnard Plain Seawater Intrusion Control Project (UWCD's Pumping Trough Pipeline, Lower Aquifer System Wells, Freeman Diversion) – Encourage UWCD projects.
- Annual Groundwater Monitoring Program Conducted by VCWPD and UWCD.

- East and West Las Posas Basin Pumping Restrictions Restricted water use outside La Posas basin and FCGMA boundary.
- <u>Monitor FCGMA Groundwater Extractions</u> Program of reporting extractions to FCGMA.
- <u>Implementation of Drilling and Pumping Restrictions</u> Various policies for aquifers used for water production and for well completions.
- Metering of Groundwater Extractions Required meters on all except domestic wells.
- Fox Canyon Outcrop Expansion Area Grandfathered some historic areas where groundwater pumped from within the FCGMA is delivered outside of Agency boundaries.
- <u>Noble Spreading Basins</u> Encouraged expanding UWCD historical artificial recharge areas.
- <u>Las Posas Basin ASR Project</u> Set criteria for Aquifer Storage and Recovery project in Las Posas basin.
- <u>Conejo Creek Diversion Project</u> Allowed credits for diversion and delivery of water to pumpers in-lieu of their pumping groundwater.
- <u>Supplemental M&I Water Program</u> Allowed credits earned in Pleasant Valley basin to be pumped from Oxnard Plain Forebay basin which is more easily recharged.
- <u>Saticoy Wellfield</u> Groundwater pumped by UWCD from Oxnard Plain Forebay basin is delivered to pumpers in Oxnard Plain and Pleasant Valley basins in lieu of pumping local groundwater.
- <u>Importation of State Water</u> Credits earned by UWCD for importing State Water for recharge are put in a special account to help solve management problems in the future.
- <u>Calibration of Groundwater Extraction Meters</u> Meters on wells will now be recalibrated every three years.

Strategies under Development are those in which planning and design of projects is currently taking place:

- Riverpark Recharge Pits Encourage additional recharge facilities in Forebay.
- <u>GREAT Project (Recycled Water)</u> Credits earned from in-lieu deliveries and injection of recycled can be pumped from Forebay.
- South Las Posas Basin Pump/Treat Poor quality water can be pumped and treated without using credits.

- <u>Development of Brackish Groundwater, Pleasant Valley Basin</u> Poor quality water may be able to be pumped and treated without using credits.
- <u>Non-Export of FCGMA Water</u> Enforce current restrictions on water export; determine procedure for periodic evaluation of whether there are new water exports.

Future Strategies within the first 5 years (ranked in order of effectiveness) include:

- 5-Year Update of FCGMA Management Plan Regular updating of plan, report on BMOs and progress
- Plan to Shift Some Pumping Back to Upper Aquifer System Shift some new wells back to UAS, with area and number to be determined jointly with UWCD using Ventura Regional Groundwater Model.
- Protect Current Sources of Recharge Use FCGMA influence with regulatory
 agencies to ensure that sources of recharge such as the Santa Clara River are not
 degraded or unduly dedicated to non-recharge uses.
- <u>Limitation on Nitrate Sources in Portions of the Oxnard Plain Forebay Basin</u> Limit high-nitrate crops in reclaimed gravel basins in Forebay where a vadose zone is either very thin or missing.
- Policy on Recovery of Credits from Oxnard Plain Forebay Basin Adopt a recommended policy for transfer of credits for pumping in the Oxnard Plain Forebay basin.
- Verification of Extraction Reporting Annually check a few random wells for meter use and accurate reporting of meter readings.
- <u>Separate Management Strategies for Some Basins</u> Adopt East Las Posas Basin Management Plan.
- FCGMA Boundary Adjust FCGMA boundary to conform to Oak Ridge fault and boundary with Santa Paula Basin Adjudication.
- <u>Irrigation Efficiency Calculations</u> Consider modifying calculations for Irrigation Efficiency Allocation.
- Additional Storage Projects in Overdrafted Basins Consider storage projects in Pleasant Valley and perhaps southern Oxnard Plain basins, ensuring that the storage does not interfere with current groundwater uses or recharge to the basin.
- <u>Penalties Used to Purchase Replacement Water</u> Use penalties for pumping beyond allocation to purchase water for recharge to the aquifers.
- Additional Water Conservation Encourage agencies and cities to require dual plumbing in new developments, where possible, to replace groundwater use with recycled water.

• <u>Shelf Life for Conservation Credits</u> – Allow Conservation Credits to expire after a wet-dry cycle to bring credit policy in line with goals of this program.

Future Strategies within 5 to 10 years (ranked in order of effectiveness) include:

- <u>Additional In-Lieu Recharge to South Oxnard Plain</u> Deliver additional water to southern Oxnard Plain to offset pumping.
- Import Additional State Water Import and recharge more of Ventura County's State Water Allocation.
- Further Destruction of Abandoned or Leaking Wells Seek grant funding to reinstate program of destroying abandoned or leaking wells that pose a risk of cross contamination of FCGMA aquifers.
- <u>Additional Monitoring Needs</u> Support UWCD and VCWPD in determining additional monitoring needs as contamination threats evolve.

Future Strategies within 10 to 15 years (ranked in order of effectiveness) include:

- <u>Barrier Wells in South Oxnard Plain</u> Develop a policy for credits for water injected in barrier wells.
- <u>Injection of Treated River Water into Overdrafted Basins</u> Treat diverted river water to drinking water quality and recharge it through injection in Oxnard Plain and Pleasant Valley basin.
- <u>Increase Diversions from Santa Clara River</u>—Increase diversions of high-volume storm flows for recharge.
- <u>Shift Pumping to Northwest Oxnard Plain</u> Shift some pumping to the more easily recharged northwestern Oxnard Plain.

Future Strategies greater than 15 years from now (ranked in order of effectiveness) include:

 Additional Reductions in Pumping Allocations – As a last resort if the other strategies fail to meet Basin Management Objectives, consider reducing allocations beyond the required 25% reduction.